Unknown

Dataset Information

0

Immunisation of Sheep with Bovine Viral Diarrhoea Virus, E2 Protein Using a Freeze-Dried Hollow Silica Mesoporous Nanoparticle Formulation.


ABSTRACT: Bovine viral diarrhoea virus 1 (BVDV-1) is arguably the most important viral disease of cattle. It is associated with reproductive, respiratory and chronic diseases in cattle across the world. In this study we have investigated the capacity of the major immunological determinant of BVDV-1, the E2 protein combined with hollow type mesoporous silica nanoparticles with surface amino functionalisation (HMSA), to stimulate immune responses in sheep. The current work also investigated the immunogenicity of the E2 nanoformulation before and after freeze-drying processes. The optimal excipient formulation for freeze-drying of the E2 nanoformulation was determined to be 5% trehalose and 1% glycine. This excipient formulation preserved both the E2 protein integrity and HMSA particle structure. Sheep were immunised three times at three week intervals by subcutaneous injection with 500 ?g E2 adsorbed to 6.2 mg HMSA as either a non-freeze-dried or freeze-dried nanoformulation. The capacity of both nanovaccine formulations to generate humoral (antibody) and cell-mediated responses in sheep were compared to the responses in sheep immunisation with Opti-E2 (500 ?g) together with the conventional adjuvant Quil-A (1 mg), a saponin from the Molina tree (Quillaja saponira). The level of the antibody responses detected to both the non-freeze-dried and freeze-dried Opti-E2/HMSA nanoformulations were similar to those obtained for Opti-E2 plus Quil-A, demonstrating the E2 nanoformulations were immunogenic in a large animal, and freeze-drying did not affect the immunogenicity of the E2 antigen. Importantly, it was demonstrated that the long term cell-mediated immune responses were detectable up to four months after immunisation. The cell-mediated immune responses were consistently high in all sheep immunised with the freeze-dried Opti-E2/HMSA nanovaccine formulation (>2,290 SFU/million cells) compared to the non-freeze-dried nanovaccine formulation (213-500 SFU/million cells). This study is the first to demonstrate that a freeze-dried silica mesoporous nanovaccine formulation gives balanced immune responses in a production animal.

SUBMITTER: Mahony D 

PROVIDER: S-EPMC4633290 | biostudies-literature | 2015

REPOSITORIES: biostudies-literature

altmetric image

Publications

Immunisation of Sheep with Bovine Viral Diarrhoea Virus, E2 Protein Using a Freeze-Dried Hollow Silica Mesoporous Nanoparticle Formulation.

Mahony Donna D   Mody Karishma T KT   Cavallaro Antonino S AS   Hu Qiuhong Q   Mahony Timothy J TJ   Qiao Shizhang S   Mitter Neena N  

PloS one 20151104 11


Bovine viral diarrhoea virus 1 (BVDV-1) is arguably the most important viral disease of cattle. It is associated with reproductive, respiratory and chronic diseases in cattle across the world. In this study we have investigated the capacity of the major immunological determinant of BVDV-1, the E2 protein combined with hollow type mesoporous silica nanoparticles with surface amino functionalisation (HMSA), to stimulate immune responses in sheep. The current work also investigated the immunogenici  ...[more]

Similar Datasets

| S-EPMC6008237 | biostudies-literature
| S-EPMC8746618 | biostudies-literature
| S-EPMC6746239 | biostudies-literature
| S-EPMC7221785 | biostudies-literature