Conditional PDK1 Ablation Promotes Epidermal and T-Cell-Mediated Dysfunctions Leading to Inflammatory Skin Disease.
Ontology highlight
ABSTRACT: Phosphoinositide-dependent kinase-1 (PDK1) is a key signaling molecule downstream of the phosphatidylinositol 3-kinase pathway and is a master regulator of multiple kinases in cells of epithelial and hematopoietic lineages. The physiological role of PDK1 in regulating skin and immune homeostasis is not known. Here we developed a mouse model in which PDK1 is conditionally ablated in activated CD4 T cells, regulatory T cells, and mature keratinocytes through OX40-Cre recombinase expression. The resultant mice (PDK1-CKO) spontaneously developed severe dermatitis, skin fibrosis, and systemic T helper type 2 immunity, succumbing by 11 weeks of age. Through a series of T-cell transfers, bone marrow reconstitutions, and crossing to lymphocyte-deficient backgrounds, we demonstrate that ablation of PDK1 in keratinocytes is the major driver of disease pathogenesis. PDK1-deficient keratinocytes exhibit intrinsic defects in the expression of key structural proteins including cytokeratin-10 and loricrin, resulting in increased keratinocyte turnover, which in turn triggers inflammation, T-cell recruitment, and immune-mediated destruction. Our results reveal PDK1 as a central regulator of keratinocyte homeostasis that prevents skin immune infiltration and inflammation.
SUBMITTER: Yu M
PROVIDER: S-EPMC4640961 | biostudies-literature | 2015 Nov
REPOSITORIES: biostudies-literature
ACCESS DATA