Ontology highlight
ABSTRACT: Statement of significance
Photodynamic therapy (PDT) is an effective and minimally invasive therapeutic technique for treating cancers. Mitochondrion is an attractive target for developing novel PDT agents, as it produces energy to cells and regulates apoptosis. Current mitochondria targeted photosensitizers (PSs) are based on cationic molecules, which interact with the negatively charged mitochondria membrane. However, such PSs are not specific for cancerous cells, which may result in unwanted side effects. In this study, we developed a tumor mitochondria-targeted PS, IR700DX-6T, which binds to translocator protein (TSPO). This agent effectively induced apoptosis in TSPO-positive cancer cells and significantly inhibited tumor growth in TSPO-positive tumor-bearing mice. These combined data suggest that IR700DX-6T could become a powerful tool in the treatment of multiple cancers that upregulate TSPO.
SUBMITTER: Zhang S
PROVIDER: S-EPMC4648641 | biostudies-literature | 2015 Dec
REPOSITORIES: biostudies-literature
Acta biomaterialia 20150930
Photodynamic therapy (PDT) has been proven to be a minimally invasive and effective therapeutic strategy for cancer treatment. It can be used alone or as a complement to conventional cancer treatments, such as surgical debulking and chemotherapy. The mitochondrion is an attractive target for developing novel PDT agents, as it produces energy for cells and regulates apoptosis. Current strategy of mitochondria targeting is mainly focused on utilizing cationic photosensitizers that bind to the nega ...[more]