Unknown

Dataset Information

0

High-temperature in situ crystallographic observation of reversible gas sorption in impermeable organic cages.


ABSTRACT: Crystallographic observation of adsorbed gas molecules is a highly difficult task due to their rapid motion. Here, we report the in situ single-crystal and synchrotron powder X-ray observations of reversible CO2 sorption processes in an apparently nonporous organic crystal under varying pressures at high temperatures. The host material is formed by hydrogen bond network between 1,3,5-tris-(4-carboxyphenyl)benzene (H3BTB) and N,N-dimethylformamide (DMF) and by ?-? stacking between the H3BTB moieties. The material can be viewed as a well-ordered array of cages, which are tight packed with each other so that the cages are inaccessible from outside. Thus, the host is practically nonporous. Despite the absence of permanent pathways connecting the empty cages, they are permeable to CO2 at high temperatures due to thermally activated molecular gating, and the weakly confined CO2 molecules in the cages allow direct detection by in situ single-crystal X-ray diffraction at 323 K. Variable-temperature in situ synchrotron powder X-ray diffraction studies also show that the CO2 sorption is reversible and driven by temperature increase. Solid-state magic angle spinning NMR defines the interactions of CO2 with the organic framework and dynamic motion of CO2 in cages. The reversible sorption is attributed to the dynamic motion of the DMF molecules combined with the axial motions/angular fluctuations of CO2 (a series of transient opening/closing of compartments enabling CO2 molecule passage), as revealed from NMR and simulations. This temperature-driven transient molecular gating can store gaseous molecules in ordered arrays toward unique collective properties and release them for ready use.

SUBMITTER: Baek SB 

PROVIDER: S-EPMC4655546 | biostudies-literature | 2015 Nov

REPOSITORIES: biostudies-literature

altmetric image

Publications

High-temperature in situ crystallographic observation of reversible gas sorption in impermeable organic cages.

Baek Seung Bin SB   Moon Dohyun D   Graf Robert R   Cho Woo Jong WJ   Park Sung Woo SW   Yoon Tae-Ung TU   Cho Seung Joo SJ   Hwang In-Chul IC   Bae Youn-Sang YS   Spiess Hans W HW   Lee Hee Cheon HC   Kim Kwang S KS  

Proceedings of the National Academy of Sciences of the United States of America 20151102 46


Crystallographic observation of adsorbed gas molecules is a highly difficult task due to their rapid motion. Here, we report the in situ single-crystal and synchrotron powder X-ray observations of reversible CO2 sorption processes in an apparently nonporous organic crystal under varying pressures at high temperatures. The host material is formed by hydrogen bond network between 1,3,5-tris-(4-carboxyphenyl)benzene (H3BTB) and N,N-dimethylformamide (DMF) and by π-π stacking between the H3BTB moiet  ...[more]

Similar Datasets

| S-EPMC7689770 | biostudies-literature
| S-EPMC9079844 | biostudies-literature
| S-EPMC4496785 | biostudies-literature
| S-EPMC8749549 | biostudies-literature
| S-EPMC5455493 | biostudies-literature
| S-EPMC3778763 | biostudies-literature
| S-EPMC6274383 | biostudies-literature
| S-EPMC9527796 | biostudies-literature
| S-EPMC6747882 | biostudies-literature
| S-EPMC4814776 | biostudies-literature