Unknown

Dataset Information

0

Hormone-regulated defense and stress response networks contribute to heterosis in Arabidopsis F1 hybrids.


ABSTRACT: Plant hybrids are extensively used in agriculture to deliver increases in yields, yet the molecular basis of their superior performance (heterosis) is not well understood. Our transcriptome analysis of a number of Arabidopsis F1 hybrids identified changes to defense and stress response gene expression consistent with a reduction in basal defense levels. Given the reported antagonism between plant immunity and growth, we suggest that these altered patterns of expression contribute to the greater growth of the hybrids. The altered patterns of expression in the hybrids indicate decreases to the salicylic acid (SA) biosynthesis pathway and increases in the auxin [indole-3-acetic acid (IAA)] biosynthesis pathway. SA and IAA are hormones known to control stress and defense responses as well as plant growth. We found that IAA-targeted gene activity is frequently increased in hybrids, correlating with a common heterotic phenotype of greater leaf cell numbers. Reduced SA concentration and target gene responses occur in the larger hybrids and promote increased leaf cell size. We demonstrated the importance of SA action to the hybrid phenotype by manipulating endogenous SA concentrations. Increasing SA diminished heterosis in SA-reduced hybrids, whereas decreasing SA promoted growth in some hybrids and phenocopied aspects of hybrid vigor in parental lines. Pseudomonas syringae infection of hybrids demonstrated that the reductions in basal defense gene activity in these hybrids does not necessarily compromise their ability to mount a defense response comparable to the parents.

SUBMITTER: Groszmann M 

PROVIDER: S-EPMC4655576 | biostudies-literature | 2015 Nov

REPOSITORIES: biostudies-literature

altmetric image

Publications

Hormone-regulated defense and stress response networks contribute to heterosis in Arabidopsis F1 hybrids.

Groszmann Michael M   Gonzalez-Bayon Rebeca R   Lyons Rebecca L RL   Greaves Ian K IK   Kazan Kemal K   Peacock W James WJ   Dennis Elizabeth S ES  

Proceedings of the National Academy of Sciences of the United States of America 20151102 46


Plant hybrids are extensively used in agriculture to deliver increases in yields, yet the molecular basis of their superior performance (heterosis) is not well understood. Our transcriptome analysis of a number of Arabidopsis F1 hybrids identified changes to defense and stress response gene expression consistent with a reduction in basal defense levels. Given the reported antagonism between plant immunity and growth, we suggest that these altered patterns of expression contribute to the greater  ...[more]

Similar Datasets

2015-10-01 | GSE64475 | GEO
2015-10-01 | E-GEOD-64475 | biostudies-arrayexpress
| S-EPMC10538547 | biostudies-literature
| S-EPMC5510844 | biostudies-literature
2022-06-17 | MSV000089682 | MassIVE
| S-EPMC7238264 | biostudies-literature
| S-EPMC8055661 | biostudies-literature
| S-EPMC3918825 | biostudies-other
| S-EPMC4842955 | biostudies-literature
| S-EPMC3344962 | biostudies-literature