Unknown

Dataset Information

0

Mid-Pleistocene climate transition drives net mass loss from rapidly uplifting St. Elias Mountains, Alaska.


ABSTRACT: Erosion, sediment production, and routing on a tectonically active continental margin reflect both tectonic and climatic processes; partitioning the relative importance of these processes remains controversial. Gulf of Alaska contains a preserved sedimentary record of the Yakutat Terrane collision with North America. Because tectonic convergence in the coastal St. Elias orogen has been roughly constant for 6 My, variations in its eroded sediments preserved in the offshore Surveyor Fan constrain a budget of tectonic material influx, erosion, and sediment output. Seismically imaged sediment volumes calibrated with chronologies derived from Integrated Ocean Drilling Program boreholes show that erosion accelerated in response to Northern Hemisphere glacial intensification (? 2.7 Ma) and that the 900-km-long Surveyor Channel inception appears to correlate with this event. However, tectonic influx exceeded integrated sediment efflux over the interval 2.8-1.2 Ma. Volumetric erosion accelerated following the onset of quasi-periodic (? 100-ky) glacial cycles in the mid-Pleistocene climate transition (1.2-0.7 Ma). Since then, erosion and transport of material out of the orogen has outpaced tectonic influx by 50-80%. Such a rapid net mass loss explains apparent increases in exhumation rates inferred onshore from exposure dates and mapped out-of-sequence fault patterns. The 1.2-My mass budget imbalance must relax back toward equilibrium in balance with tectonic influx over the timescale of orogenic wedge response (millions of years). The St. Elias Range provides a key example of how active orogenic systems respond to transient mass fluxes, and of the possible influence of climate-driven erosive processes that diverge from equilibrium on the million-year scale.

SUBMITTER: Gulick SP 

PROVIDER: S-EPMC4679047 | biostudies-literature | 2015 Dec

REPOSITORIES: biostudies-literature

altmetric image

Publications

Mid-Pleistocene climate transition drives net mass loss from rapidly uplifting St. Elias Mountains, Alaska.

Gulick Sean P S SP   Jaeger John M JM   Mix Alan C AC   Asahi Hirofumi H   Bahlburg Heinrich H   Belanger Christina L CL   Berbel Glaucia B B GB   Childress Laurel L   Cowan Ellen E   Drab Laureen L   Forwick Matthias M   Fukumura Akemi A   Ge Shulan S   Gupta Shyam S   Kioka Arata A   Konno Susumu S   LeVay Leah J LJ   März Christian C   Matsuzaki Kenji M KM   McClymont Erin L EL   Moy Chris C   Müller Juliane J   Nakamura Atsunori A   Ojima Takanori T   Ribeiro Fabiana R FR   Ridgway Kenneth D KD   Romero Oscar E OE   Slagle Angela L AL   Stoner Joseph S JS   St-Onge Guillaume G   Suto Itsuki I   Walczak Maureen D MD   Worthington Lindsay L LL   Bailey Ian I   Enkelmann Eva E   Reece Robert R   Swartz John M JM  

Proceedings of the National Academy of Sciences of the United States of America 20151123 49


Erosion, sediment production, and routing on a tectonically active continental margin reflect both tectonic and climatic processes; partitioning the relative importance of these processes remains controversial. Gulf of Alaska contains a preserved sedimentary record of the Yakutat Terrane collision with North America. Because tectonic convergence in the coastal St. Elias orogen has been roughly constant for 6 My, variations in its eroded sediments preserved in the offshore Surveyor Fan constrain  ...[more]

Similar Datasets

| S-EPMC6341081 | biostudies-literature
| S-EPMC4995940 | biostudies-literature
| S-EPMC8181159 | biostudies-literature
| S-EPMC7872280 | biostudies-literature
| S-EPMC4915025 | biostudies-literature
| S-EPMC6861309 | biostudies-literature
| S-EPMC5740680 | biostudies-literature
| S-EPMC6300599 | biostudies-literature
| S-EPMC1686174 | biostudies-literature
| S-EPMC7880589 | biostudies-literature