Unknown

Dataset Information

0

Integrated Analysis of Contractile Kinetics, Force Generation, and Electrical Activity in Single Human Stem Cell-Derived Cardiomyocytes.


ABSTRACT: The quantitative analysis of cardiomyocyte function is essential for stem cell-based approaches for the in vitro study of human cardiac physiology and pathophysiology. We present a method to comprehensively assess the function of single human pluripotent stem cell-derived cardiomyocyte (hPSC-CMs) through simultaneous quantitative analysis of contraction kinetics, force generation, and electrical activity. We demonstrate that statistical analysis of movies of contracting hPSC-CMs can be used to quantify changes in cellular morphology over time and compute contractile kinetics. Using a biomechanical model that incorporates substrate stiffness, we calculate cardiomyocyte force generation at single-cell resolution and validate this approach with conventional traction force microscopy. The addition of fluorescent calcium indicators or membrane potential dyes allows the simultaneous analysis of contractility and calcium handling or action potential morphology. Accordingly, our approach has the potential for broad application in the study of cardiac disease, drug discovery, and cardiotoxicity screening.

SUBMITTER: Kijlstra JD 

PROVIDER: S-EPMC4682285 | biostudies-literature | 2015 Dec

REPOSITORIES: biostudies-literature

altmetric image

Publications

Integrated Analysis of Contractile Kinetics, Force Generation, and Electrical Activity in Single Human Stem Cell-Derived Cardiomyocytes.

Kijlstra Jan David JD   Hu Dongjian D   Mittal Nikhil N   Kausel Eduardo E   van der Meer Peter P   Garakani Arman A   Domian Ibrahim J IJ  

Stem cell reports 20151125 6


The quantitative analysis of cardiomyocyte function is essential for stem cell-based approaches for the in vitro study of human cardiac physiology and pathophysiology. We present a method to comprehensively assess the function of single human pluripotent stem cell-derived cardiomyocyte (hPSC-CMs) through simultaneous quantitative analysis of contraction kinetics, force generation, and electrical activity. We demonstrate that statistical analysis of movies of contracting hPSC-CMs can be used to q  ...[more]

Similar Datasets

| S-EPMC3356329 | biostudies-literature
| S-EPMC6004416 | biostudies-literature
| S-EPMC6330446 | biostudies-literature
| S-EPMC6283051 | biostudies-literature
2015-11-05 | E-GEOD-74669 | biostudies-arrayexpress
| S-EPMC9555755 | biostudies-literature
| S-EPMC4670592 | biostudies-literature
| S-EPMC5965888 | biostudies-literature
2015-11-05 | GSE74669 | GEO
| S-EPMC3546995 | biostudies-literature