Ontology highlight
ABSTRACT: Purpose
RGC-5 cells undergo differentiation into a neuronal phenotype with low concentrations of staurosporine. Although the RGC-5 cell line was initially thought to be of retinal ganglion cell origin, recent evidence suggests that the RGC-5 line could have been the result of contamination with 661W mouse cone photoreceptor cells. This raised the possibility that a cone photoreceptor cell line could be multipotent and could be differentiated to a neuronal phenotype.Methods
661W and RGC-5 cells, non-neuronal retinal astrocytes, retinal endothelial cells, retinal pericytes, M21 melanoma cells, K562 chronic myelogenous leukemia cells, and Daudi Burkitt lymphoma cells, were differentiated with staurosporine. The resulting morphology was quantitated using NeuronJ with respect to neurite counts and topology.Results
Treatment with staurosporine induced similar-appearing morphological differentiation in both 661W and RGC-5 cells. The following measures were not significantly different between 661W and RGC-5 cells: number of neurites per cell, total neurite field length, number of neurite branch points, and cell viability. Neuronal-like differentiation was not observed in the other cell lines tested.Conclusions
661W and RGC-5 cells have virtually identical and distinctive morphology when differentiated with low concentrations of staurosporine. This result demonstrates that a retinal neuronal precursor cell with cone photoreceptor lineage can be differentiated to express a neuronal morphology.
SUBMITTER: Thompson AF
PROVIDER: S-EPMC4684327 | biostudies-literature | 2015
REPOSITORIES: biostudies-literature
Thompson Alex F AF Crowe Megan E ME Lieven Christopher J CJ Levin Leonard A LA
PloS one 20151218 12
<h4>Purpose</h4>RGC-5 cells undergo differentiation into a neuronal phenotype with low concentrations of staurosporine. Although the RGC-5 cell line was initially thought to be of retinal ganglion cell origin, recent evidence suggests that the RGC-5 line could have been the result of contamination with 661W mouse cone photoreceptor cells. This raised the possibility that a cone photoreceptor cell line could be multipotent and could be differentiated to a neuronal phenotype.<h4>Methods</h4>661W a ...[more]