Unknown

Dataset Information

0

Cysteine cathepsin activity suppresses osteoclastogenesis of myeloid-derived suppressor cells in breast cancer.


ABSTRACT: Cysteine cathepsin proteases contribute to many normal cellular functions, and their aberrant activity within various cell types can contribute to many diseases, including breast cancer. It is now well accepted that cathepsin proteases have numerous cell-specific functions within the tumor microenvironment that function to promote tumor growth and invasion, such that they may be valid targets for anti-metastatic therapeutic approaches. Using activity-based probes, we have examined the activity and expression of cysteine cathepsins in a mouse model of breast cancer metastasis to bone. In mice bearing highly metastatic tumors, we detected abundant cysteine cathepsin expression and activity in myeloid-derived suppressor cells (MDSCs). These immature immune cells have known metastasis-promoting roles, including immunosuppression and osteoclastogenesis, and we assessed the contribution of cysteine cathepsins to these functions. Blocking cysteine cathepsin activity with multiple small-molecule inhibitors resulted in enhanced differentiation of multinucleated osteoclasts. This highlights a potential role for cysteine cathepsin activity in suppressing the fusion of osteoclast precursor cells. In support of this hypothesis, we found that expression and activity of key cysteine cathepsins were downregulated during MDSC-osteoclast differentiation. Another cysteine protease, legumain, also inhibits osteoclastogenesis, in part through modulation of cathepsin L activity. Together, these data suggest that cysteine protease inhibition is associated with enhanced osteoclastogenesis, a process that has been implicated in bone metastasis.

SUBMITTER: Edgington-Mitchell LE 

PROVIDER: S-EPMC4694970 | biostudies-literature | 2015 Sep

REPOSITORIES: biostudies-literature

altmetric image

Publications

Cysteine cathepsin activity suppresses osteoclastogenesis of myeloid-derived suppressor cells in breast cancer.

Edgington-Mitchell Laura E LE   Rautela Jai J   Duivenvoorden Hendrika M HM   Jayatilleke Krishnath M KM   van der Linden Wouter A WA   Verdoes Martijn M   Bogyo Matthew M   Parker Belinda S BS  

Oncotarget 20150901 29


Cysteine cathepsin proteases contribute to many normal cellular functions, and their aberrant activity within various cell types can contribute to many diseases, including breast cancer. It is now well accepted that cathepsin proteases have numerous cell-specific functions within the tumor microenvironment that function to promote tumor growth and invasion, such that they may be valid targets for anti-metastatic therapeutic approaches. Using activity-based probes, we have examined the activity a  ...[more]

Similar Datasets

| 2381881 | ecrin-mdr-crc
| S-EPMC6512748 | biostudies-literature
| S-EPMC3075086 | biostudies-literature
| S-EPMC2805057 | biostudies-other
| S-EPMC7295224 | biostudies-literature
| S-EPMC3392490 | biostudies-literature
| S-EPMC5371700 | biostudies-literature
| S-EPMC7018659 | biostudies-literature
| S-EPMC4056279 | biostudies-literature
| S-EPMC7426395 | biostudies-literature