Unknown

Dataset Information

0

Thermal-activated protein mobility and its correlation with catalysis in thermophilic alcohol dehydrogenase.


ABSTRACT: Temperature-dependent hydrogen-deuterium (H/D) exchange of the thermophilic alcohol dehydrogenase (htADH) has been studied by using liquid chromatography-coupled mass spectrometry. Analysis of the changes in H/D exchange patterns for the protein-derived peptides suggests that some regions of htADH are in a rigid conformational substate at reduced temperatures with limited cooperative protein motion. The enzyme undergoes two discrete transitions at approximately 30 and 45 degrees C to attain a more dynamic conformational substate. Four of the five peptides exhibiting the transition above 40 degrees C are in direct contact with the cofactor, and the NAD(+)-binding affinity is also altered in this temperature range, implicating a change in the mobility of the cofactor-binding domain >45 degrees C. By contrast, the five peptides exhibiting the transition at 30 degrees C reside in the substrate-binding domain. This transition coincides with a change in the activation energy of k(cat) for hydride transfer, leading to a linear correlation between k(cat) and the weighted average exchange rate constant k(HX(WA)) for the five peptides. These observations indicate a direct coupling between hydride transfer and protein mobility in htADH, and that an increased mobility is at least partially responsible for the reduced E(act) at high temperature. The data provide support for the hypothesis that protein dynamics play a key role in controlling hydrogen tunneling at enzyme active sites.

SUBMITTER: Liang ZX 

PROVIDER: S-EPMC470713 | biostudies-literature | 2004 Jun

REPOSITORIES: biostudies-literature

altmetric image

Publications

Thermal-activated protein mobility and its correlation with catalysis in thermophilic alcohol dehydrogenase.

Liang Zhao-Xun ZX   Lee Thomas T   Resing Katheryn A KA   Ahn Natalie G NG   Klinman Judith P JP  

Proceedings of the National Academy of Sciences of the United States of America 20040621 26


Temperature-dependent hydrogen-deuterium (H/D) exchange of the thermophilic alcohol dehydrogenase (htADH) has been studied by using liquid chromatography-coupled mass spectrometry. Analysis of the changes in H/D exchange patterns for the protein-derived peptides suggests that some regions of htADH are in a rigid conformational substate at reduced temperatures with limited cooperative protein motion. The enzyme undergoes two discrete transitions at approximately 30 and 45 degrees C to attain a mo  ...[more]

Similar Datasets

| S-EPMC4165444 | biostudies-literature
| S-EPMC2812590 | biostudies-literature
| S-EPMC5518280 | biostudies-literature
| S-EPMC4056859 | biostudies-literature
| S-EPMC7154551 | biostudies-literature
| PRJNA759401 | ENA
| S-EPMC4970856 | biostudies-literature
| S-EPMC5802873 | biostudies-literature
| S-EPMC4052635 | biostudies-literature
| S-EPMC2312447 | biostudies-literature