ABSTRACT: As a serine/threonine protein kinase, p70S6K plays an important role in tumor cells. Evidence has revealed overexpression of p70S6K and phosphorylated p70S6K (p-p70S6K) in various tumor tissues, with these proteins identified as independent prognostic markers in non-small cell lung cancer (NSCLC). In this study, we explored the role of the p70S6K specific inhibitor PF-4708671 in NSCLC.Three NSCLC cell lines (A549, SK-MES-1, and NCI-H460) were treated with PF-4708671 at five different concentrations, including 0.1?M, 0.3?M, 1?M, 3?M and 10?M, and protein levels were determined by Western-blot. Then, PF-4708671's effects were assessed both in vitro (cell proliferation, apoptosis, cell cycle distribution, and invasion) and in vivo.The expression levels of p-p70S6K and the downstream effector S6 were significantly reduced by PF-4708671. Diametrically opposite, the downstream protein levels of BAD, Caspase3 and ERK had increased after treatment with PF-4708671. In addition, PF-4708671 drastically inhibited cell proliferation and invasion ability in A549, SK-MES-1 and NCI-H460 cells in vitro, causing cell cycle arrest in G0-G1 phase. Limited effects of PF-4708671 were observed on apoptosis in the three NSCLC cell lines assessed. Importantly, PF-4708671 could inhibit tumorigenesis in nude mice in vivo.These findings demonstrated that the p70S6K specific inhibitor PF-4708671 has inhibitory effects on NSCLC tumorigenesis in vitro and in vivo. Therefore, P70S6K should be considered a new potential therapeutic target, and PF-470867 may be used as targeted drug for cancer treatment.