Unknown

Dataset Information

0

Mycobacterium tuberculosis copper-regulated protein SocB is an intrinsically disordered protein that folds upon interaction with a synthetic phospholipid bilayer.


ABSTRACT: Multiple genes in Mycobacterium tuberculosis (Mtb) are regulated by copper including socAB (small orf induced by copper A and B), which is induced by copper and repressed by RicR (regulated in copper repressor). socA and socB encode hypothetical proteins of 61 and 54 amino acids, respectively. Here, we use biophysical and computational methods to evaluate the SocB structure. We find that SocB lacks evidence for secondary structure, with no thermal cooperative unfolding event, according to circular dichroism measurements. 2D NMR spectra similarly exhibit hallmarks of a disordered structural state, which is also supported by analyzing SocB diffusion. Altogether, these findings suggest that by itself SocB is intrinsically disordered. Interestingly, SocB interacts with a synthetic phospholipid bilayer and becomes helical, which suggests that it may be membrane-associated.

SUBMITTER: Nowicka U 

PROVIDER: S-EPMC4718776 | biostudies-literature | 2016 Feb

REPOSITORIES: biostudies-literature

altmetric image

Publications

Mycobacterium tuberculosis copper-regulated protein SocB is an intrinsically disordered protein that folds upon interaction with a synthetic phospholipid bilayer.

Nowicka Urszula U   Hoffman Morgan M   Randles Leah L   Shi Xiaoshan X   Khavrutskii Lyuba L   Stefanisko Karen K   Tarasova Nadya I NI   Darwin K Heran KH   Walters Kylie J KJ  

Proteins 20151229 2


Multiple genes in Mycobacterium tuberculosis (Mtb) are regulated by copper including socAB (small orf induced by copper A and B), which is induced by copper and repressed by RicR (regulated in copper repressor). socA and socB encode hypothetical proteins of 61 and 54 amino acids, respectively. Here, we use biophysical and computational methods to evaluate the SocB structure. We find that SocB lacks evidence for secondary structure, with no thermal cooperative unfolding event, according to circul  ...[more]

Similar Datasets

| S-EPMC3752131 | biostudies-literature
| S-EPMC5937165 | biostudies-literature
| S-EPMC3375559 | biostudies-literature
| S-EPMC10401938 | biostudies-literature
| S-EPMC3457758 | biostudies-other
| S-EPMC5675102 | biostudies-other
| S-EPMC6954741 | biostudies-literature
| S-EPMC3183800 | biostudies-other
| S-EPMC4008819 | biostudies-literature
| S-EPMC2734869 | biostudies-literature