Unknown

Dataset Information

0

Lipopeptide-Coated Iron Oxide Nanoparticles as Potential Glycoconjugate-Based Synthetic Anticancer Vaccines.


ABSTRACT: Although iron oxide magnetic nanoparticles (NPs) have been widely utilized in molecular imaging and drug delivery studies, they have not been evaluated as carriers for glycoconjugate-based anticancer vaccines. Tumor-associated carbohydrate antigens (TACAs) are attractive targets for the development of anticancer vaccines. Due to the weak immunogenicity of these antigens, it is highly challenging to elicit strong anti-TACA immune responses. With their high biocompatibilities and large surface areas, magnetic NPs were synthesized for TACA delivery. The magnetic NPs were coated with phospholipid-functionalized TACA glycopeptides through hydrophobic-hydrophobic interactions without the need for any covalent linkages. Multiple copies of glycopeptides were presented on NPs, potentially leading to enhanced interactions with antibody-secreting B cells through multivalent binding. Mice immunized with the NPs generated strong antibody responses, and the glycopeptide structures important for high antibody titers were identified. The antibodies produced were capable of recognizing both mouse and human tumor cells expressing the glycopeptide, resulting in tumor cell death through complement-mediated cytotoxicities. These results demonstrate that magnetic NPs can be a new and simple platform for multivalently displaying TACA and boosting anti-TACA immune responses without the need for a typical protein carrier.

SUBMITTER: Sungsuwan S 

PROVIDER: S-EPMC4724168 | biostudies-literature | 2015 Aug

REPOSITORIES: biostudies-literature

altmetric image

Publications

Lipopeptide-Coated Iron Oxide Nanoparticles as Potential Glycoconjugate-Based Synthetic Anticancer Vaccines.

Sungsuwan Suttipun S   Yin Zhaojun Z   Huang Xuefei X  

ACS applied materials & interfaces 20150803 31


Although iron oxide magnetic nanoparticles (NPs) have been widely utilized in molecular imaging and drug delivery studies, they have not been evaluated as carriers for glycoconjugate-based anticancer vaccines. Tumor-associated carbohydrate antigens (TACAs) are attractive targets for the development of anticancer vaccines. Due to the weak immunogenicity of these antigens, it is highly challenging to elicit strong anti-TACA immune responses. With their high biocompatibilities and large surface are  ...[more]

Similar Datasets

| S-EPMC8787352 | biostudies-literature
| S-EPMC3278278 | biostudies-literature
| S-EPMC6116232 | biostudies-literature
| S-EPMC7029634 | biostudies-literature
2018-01-05 | GSE93187 | GEO
| S-EPMC6595192 | biostudies-literature
| S-EPMC7022723 | biostudies-literature
| S-EPMC3617810 | biostudies-literature
| S-EPMC3992974 | biostudies-literature