Unknown

Dataset Information

0

Charge transport through one-dimensional Moire crystals.


ABSTRACT: Moiré superlattices were generated in two-dimensional (2D) van der Waals heterostructures and have revealed intriguing electronic structures. The appearance of mini-Dirac cones within the conduction and valence bands of graphene is one of the most striking among the new quantum features. A Moiré superstructure emerges when at least two periodic sub-structures superimpose. 2D Moiré patterns have been particularly investigated in stacked hexagonal 2D atomic lattices like twisted graphene layers and graphene deposited on hexagonal boron-nitride. In this letter, we report both experimentally and theoretically evidence of superlattices physics in transport properties of one-dimensional (1D) Moiré crystals. Rolling-up few layers of graphene to form a multiwall carbon nanotube adds boundaries conditions that can be translated into interference fringes-like Moiré patterns along the circumference of the cylinder. Such a 1D Moiré crystal exhibits a complex 1D multiple bands structure with clear and robust interband quantum transitions due to the presence of mini-Dirac points and pseudo-gaps. Our devices consist in a very large diameter (>80 nm) multiwall carbon nanotubes of high quality, electrically connected by metallic electrodes acting as charge reservoirs. Conductance measurements reveal the presence of van Hove singularities assigned to 1D Moiré superlattice effect and illustrated by electronic structure calculations.

SUBMITTER: Bonnet R 

PROVIDER: S-EPMC4726225 | biostudies-literature | 2016 Jan

REPOSITORIES: biostudies-literature

altmetric image

Publications

Charge transport through one-dimensional Moiré crystals.

Bonnet Roméo R   Lherbier Aurélien A   Barraud Clément C   Della Rocca Maria Luisa ML   Lafarge Philippe P   Charlier Jean-Christophe JC  

Scientific reports 20160120


Moiré superlattices were generated in two-dimensional (2D) van der Waals heterostructures and have revealed intriguing electronic structures. The appearance of mini-Dirac cones within the conduction and valence bands of graphene is one of the most striking among the new quantum features. A Moiré superstructure emerges when at least two periodic sub-structures superimpose. 2D Moiré patterns have been particularly investigated in stacked hexagonal 2D atomic lattices like twisted graphene layers an  ...[more]

Similar Datasets

| S-EPMC6751181 | biostudies-literature
| S-EPMC9256740 | biostudies-literature
| S-EPMC7798091 | biostudies-literature
| S-EPMC4686878 | biostudies-literature
| S-EPMC6384653 | biostudies-literature
| S-EPMC6420303 | biostudies-literature
| S-EPMC5633016 | biostudies-literature
| S-EPMC4846453 | biostudies-literature
| S-EPMC6447564 | biostudies-literature
| S-EPMC4127491 | biostudies-literature