Unknown

Dataset Information

0

Heterologously-expressed and Liposome-reconstituted Human Transient Receptor Potential Melastatin 4 Channel (TRPM4) is a Functional Tetramer.


ABSTRACT: Mutation, irregular expression and sustained activation of the Transient Receptor Potential Channel, type Melastatin 4 (TRPM4), have been linked to various cardiovascular diseases. However, much remains unknown about the structure of this important ion channel. Here, we have purified a heterologously expressed TRPM4-eGFP fusion protein and investigated the oligomeric state of TRPM4-eGFP in detergent micelles using crosslinking, native gel electrophoresis, multi-angle laser light scattering and electron microscopy. Our data indicate that TRPM4 is tetrameric, like other TRP channels studied to date. Furthermore, the functionality of liposome reconstituted TRPM4-eGFP was examined using electrophysiology. Single-channel recordings from TRPM4-eGFP proteoliposomes showed inhibition of the channel using Flufenamic acid, a well-established inhibitor of TRPM4, suggesting that the channels are functional upon reconstitution. Our characterisation of the oligomeric structure of TRPM4 and the ability to reconstitute functional channels in liposomes should facilitate future studies into the structure, function and pharmacology of this therapeutically relevant channel.

SUBMITTER: Constantine M 

PROVIDER: S-EPMC4726259 | biostudies-literature | 2016 Jan

REPOSITORIES: biostudies-literature

altmetric image

Publications

Heterologously-expressed and Liposome-reconstituted Human Transient Receptor Potential Melastatin 4 Channel (TRPM4) is a Functional Tetramer.

Constantine Maryrose M   Liew Chu Kong CK   Lo Victor V   Macmillan Alex A   Cranfield Charles G CG   Sunde Margaret M   Whan Renee R   Graham Robert M RM   Martinac Boris B  

Scientific reports 20160120


Mutation, irregular expression and sustained activation of the Transient Receptor Potential Channel, type Melastatin 4 (TRPM4), have been linked to various cardiovascular diseases. However, much remains unknown about the structure of this important ion channel. Here, we have purified a heterologously expressed TRPM4-eGFP fusion protein and investigated the oligomeric state of TRPM4-eGFP in detergent micelles using crosslinking, native gel electrophoresis, multi-angle laser light scattering and e  ...[more]

Similar Datasets

| S-EPMC4361557 | biostudies-literature
| S-EPMC4485020 | biostudies-literature
| S-EPMC3727165 | biostudies-literature
| S-EPMC6240128 | biostudies-literature
| S-EPMC3762560 | biostudies-literature
| S-EPMC6773863 | biostudies-other
| S-EPMC4271229 | biostudies-literature
| S-EPMC4293696 | biostudies-literature
| S-EPMC4786473 | biostudies-literature
| S-EPMC6842127 | biostudies-literature