Unknown

Dataset Information

0

Innovation of a Regulatory Mechanism Modulating Semi-determinate Stem Growth through Artificial Selection in Soybean.


ABSTRACT: It has been demonstrated that Terminal Flowering 1 (TFL1) in Arabidopsis and its functional orthologs in other plants specify indeterminate stem growth through their specific expression that represses floral identity genes in shoot apical meristems (SAMs), and that the loss-of-function mutations at these functional counterparts result in the transition of SAMs from the vegetative to reproductive state that is essential for initiation of terminal flowering and thus formation of determinate stems. However, little is known regarding how semi-determinate stems, which produce terminal racemes similar to those observed in determinate plants, are specified in any flowering plants. Here we show that semi-determinacy in soybean is modulated by transcriptional repression of Dt1, the functional ortholog of TFL1, in SAMs. Such repression is fulfilled by recently enabled spatiotemporal expression of Dt2, an ancestral form of the APETALA1/FRUITFULL orthologs, which encodes a MADS-box factor directly binding to the regulatory sequence of Dt1. In addition, Dt2 triggers co-expression of the putative SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (GmSOC1) in SAMs, where GmSOC1 interacts with Dt2, and also directly binds to the Dt1 regulatory sequence. Heterologous expression of Dt2 and Dt1 in determinate (tfl1) Arabidopsis mutants enables creation of semi-determinacy, but the same forms of the two genes in the tfl1 and soc1 background produce indeterminate stems, suggesting that Dt2 and SOC1 both are essential for transcriptional repression of Dt1. Nevertheless, the expression of Dt2 is unable to repress TFL1 in Arabidopsis, further demonstrating the evolutionary novelty of the regulatory mechanism underlying stem growth in soybean.

SUBMITTER: Liu Y 

PROVIDER: S-EPMC4726468 | biostudies-literature | 2016 Jan

REPOSITORIES: biostudies-literature

altmetric image

Publications

Innovation of a Regulatory Mechanism Modulating Semi-determinate Stem Growth through Artificial Selection in Soybean.

Liu Yunfeng Y   Zhang Dajian D   Ping Jieqing J   Li Shuai S   Chen Zhixiang Z   Ma Jianxin J  

PLoS genetics 20160125 1


It has been demonstrated that Terminal Flowering 1 (TFL1) in Arabidopsis and its functional orthologs in other plants specify indeterminate stem growth through their specific expression that represses floral identity genes in shoot apical meristems (SAMs), and that the loss-of-function mutations at these functional counterparts result in the transition of SAMs from the vegetative to reproductive state that is essential for initiation of terminal flowering and thus formation of determinate stems.  ...[more]

Similar Datasets

| S-EPMC2889302 | biostudies-literature
| S-EPMC4937839 | biostudies-literature
| S-EPMC6645561 | biostudies-literature
| S-EPMC6507727 | biostudies-literature
| S-EPMC11365945 | biostudies-literature
| S-EPMC5094742 | biostudies-literature
| S-EPMC3970491 | biostudies-literature
| S-EPMC11341547 | biostudies-literature
| S-EPMC7358395 | biostudies-literature
| S-EPMC3511857 | biostudies-literature