Unknown

Dataset Information

0

Genome-Wide Analysis of Acute Endurance Exercise-Induced Translational Regulation in Mouse Skeletal Muscle.


ABSTRACT: Exercise dynamically changes skeletal muscle protein synthesis to respond and adapt to the external and internal stimuli. Many studies have focused on overall protein synthesis to understand how exercise regulates the muscular adaptation. However, despite the probability that each gene transcript may have its own unique translational characteristics and would be differentially regulated at translational level, little attention has been paid to how exercise affects translational regulation of individual genes at a genome-wide scale. Here, we conducted a genome-wide translational analysis using ribosome profiling to investigate the effect of a single bout of treadmill running (20 m/min for 60 min) on mouse gastrocnemius. Global translational profiles largely differed from those in transcription even at a basal resting condition as well as immediately after exercise. As for individual gene, Slc25a25 (Solute carrier family 25, member 25), localized in mitochondrial inner membrane and maintaining ATP homeostasis and endurance performance, showed significant up-regulation at translational level. However, multiple regression analysis suggests that Slc25a25 protein degradation may also have a role in mediating Slc25a25 protein abundance in the basal and early stages after acute endurance exercise.

SUBMITTER: Sako H 

PROVIDER: S-EPMC4742069 | biostudies-literature | 2016

REPOSITORIES: biostudies-literature

altmetric image

Publications

Genome-Wide Analysis of Acute Endurance Exercise-Induced Translational Regulation in Mouse Skeletal Muscle.

Sako Hiroaki H   Yada Koichi K   Suzuki Katsuhiko K  

PloS one 20160204 2


Exercise dynamically changes skeletal muscle protein synthesis to respond and adapt to the external and internal stimuli. Many studies have focused on overall protein synthesis to understand how exercise regulates the muscular adaptation. However, despite the probability that each gene transcript may have its own unique translational characteristics and would be differentially regulated at translational level, little attention has been paid to how exercise affects translational regulation of ind  ...[more]

Similar Datasets

2016-02-16 | GSE69699 | GEO
2016-02-16 | E-GEOD-69699 | biostudies-arrayexpress
| S-EPMC4845512 | biostudies-literature
| S-EPMC2680038 | biostudies-literature
2011-11-21 | E-GEOD-27285 | biostudies-arrayexpress
2011-11-21 | GSE27285 | GEO
| S-EPMC6224845 | biostudies-literature
| S-EPMC8511155 | biostudies-literature
2019-02-16 | GSE120862 | GEO