Unknown

Dataset Information

0

Voltage-Induced Ca²? Release in Postganglionic Sympathetic Neurons in Adult Mice.


ABSTRACT: Recent studies have provided evidence that depolarization in the absence of extracellular Ca2+ can trigger Ca2+ release from internal stores in a variety of neuron subtypes. Here we examine whether postganglionic sympathetic neurons are able to mobilize Ca2+ from intracellular stores in response to depolarization, independent of Ca2+ influx. We measured changes in cytosolic ?F/F0 in individual fluo-4 -loaded sympathetic ganglion neurons in response to maintained K+ depolarization in the presence (2 mM) and absence of extracellular Ca2+ ([Ca2+]e). Progressive elevations in extracellular [K+]e caused increasing membrane depolarizations that were of similar magnitude in 0 and 2 mM [Ca2+]e. Peak amplitude of ?F/F0 transients in 2 mM [Ca2+]e increased in a linear fashion as the membrane become more depolarized. Peak elevations of ?F/F0 in 0 mM [Ca2+]e were ~5-10% of those evoked at the same membrane potential in 2 mM [Ca2+]e and exhibited an inverse U-shaped dependence on voltage. Both the rise and decay of ?F/F0 transients in 0 mM [Ca2+]e were slower than those of ?F/F0 transients evoked in 2 mM [Ca2+]e. Rises in ?F/F0 evoked by high [K+]e in the absence of extracellular Ca2+ were blocked by thapsigargin, an inhibitor of endoplasmic reticulum Ca2+ ATPase, or the inositol 1,4,5-triphosphate (IP3) receptor antagonists 2-aminoethoxydiphenyl borate and xestospongin C, but not by extracellular Cd2+, the dihydropyridine antagonist nifedipine, or by ryanodine at concentrations that caused depletion of ryanodine-sensitive Ca2+ stores. These results support the notion that postganglionic sympathetic neurons possess the ability to release Ca2+ from IP3-sensitive internal stores in response to membrane depolarization, independent of Ca2+ influx.

SUBMITTER: Sun HL 

PROVIDER: S-EPMC4747524 | biostudies-literature | 2016

REPOSITORIES: biostudies-literature

altmetric image

Publications

Voltage-Induced Ca²⁺ Release in Postganglionic Sympathetic Neurons in Adult Mice.

Sun Hong-Li HL   Tsai Wen-Chin WC   Li Bai-Yan BY   Tao Wen W   Chen Peng-Sheng PS   Rubart Michael M  

PloS one 20160209 2


Recent studies have provided evidence that depolarization in the absence of extracellular Ca2+ can trigger Ca2+ release from internal stores in a variety of neuron subtypes. Here we examine whether postganglionic sympathetic neurons are able to mobilize Ca2+ from intracellular stores in response to depolarization, independent of Ca2+ influx. We measured changes in cytosolic ΔF/F0 in individual fluo-4 -loaded sympathetic ganglion neurons in response to maintained K+ depolarization in the presence  ...[more]

Similar Datasets

| S-EPMC8049128 | biostudies-literature
| S-EPMC4935554 | biostudies-literature
| S-EPMC8718059 | biostudies-literature
| S-EPMC4152604 | biostudies-literature
| S-EPMC6778234 | biostudies-literature
| S-EPMC1217408 | biostudies-other
| S-EPMC2013843 | biostudies-other
| S-EPMC3230684 | biostudies-literature
| S-EPMC10287826 | biostudies-literature
2018-12-16 | GSE48683 | GEO