Synthesis and evaluation of 1,7-diheteroarylhepta-1,4,6-trien-3-ones as curcumin-based anticancer agents.
Ontology highlight
ABSTRACT: Thirty (1E,4E,6E)-1,7-diaryl-1,4,6-heptatrien-3-ones, featuring a central linear trienone linker and two identical nitrogen-containing heteroaromatic rings, were designed and synthesized as curcumin-based anticancer agents on the basis of their structural similarity to the enol-tautomer of curcumin, in addition to taking advantage of the possibly enhanced pharmacokinetic profiles contributed by the basic nitrogen-containing heteroaromatic rings. Their cytotoxicity and antiproliferative activity were evaluated towards both androgen-dependent and androgen-independent prostate cancer cell lines, as well as HeLa human cervical cancer cells. Among them, the ten most potent analogues are 5- to 36-fold more potent than curcumin in inhibiting cancer cell proliferation. The acquired structure-activity relationship data indicate (i) that (1E,4E,6E)-1,7-diaryl-1,4,6-heptatrien-3-ones represent a potential scaffold for development of curcumin-based agents with substantially improved cytotoxicity and anti-proliferative effect; and (ii) 1-alkyl-1H-imidazol-2-yl and 1-alkyl-1H-benzo[d]imidazole-2-yl serve as optimal heteroaromatic rings for increased in vitro potency of this scaffold. Two of most potent compounds displayed no apparent cytotoxicity toward MCF-10A normal mammary epithelial cells at 1 ?M concentration. Treatment of PC-3 prostate cancer cells with the most potent compound led to appreciable cell cycle arrest at a G1/G0 phase and cell apoptosis induction.
SUBMITTER: Wang R
PROVIDER: S-EPMC4754155 | biostudies-literature | 2016 Mar
REPOSITORIES: biostudies-literature
ACCESS DATA