Ontology highlight
ABSTRACT: Background
RhoA is an important regulator of platelet responses downstream of Gα13 , yet we still know little about its regulation in platelets. Leukemia-associated Rho guanine-nucleotide exchange factor (GEF [LARG]), a RhoA GEF, is highly expressed in platelets and may constitute a major upstream activator of RhoA. To this end, it is important to determine the role of LARG in platelet function and thrombosis.Methods and results
Using a platelet-specific gene knockout, we show that the absence of LARG results in a marked reduction in aggregation and dense-granule secretion in response to the thromboxane mimetic U46619 and proteinase-activated receptor 4-activating peptide, AYPGKF, but not to adenosine diphosphate. In a ferric chloride thrombosis model in vivo, this translated into a defect, under mild injury conditions. Importantly, agonist-induced RhoA activation was not affected by the absence of LARG, although basal activity was reduced, suggesting that LARG may play a housekeeper role in regulating constitutive RhoA activity.Conclusions
LARG plays an important role in platelet function and thrombosis in vivo. However, although LARG may have a role in regulating the resting activation state of RhoA, its role in regulating platelet function may principally be through RhoA-independent pathways, possibly through other Rho family members.
SUBMITTER: Williams CM
PROVIDER: S-EPMC4755168 | biostudies-literature | 2015 Nov
REPOSITORIES: biostudies-literature
Williams C M CM Harper M T MT Goggs R R Walsh T G TG Offermanns S S Poole A W AW
Journal of thrombosis and haemostasis : JTH 20151020 11
<h4>Background</h4>RhoA is an important regulator of platelet responses downstream of Gα13 , yet we still know little about its regulation in platelets. Leukemia-associated Rho guanine-nucleotide exchange factor (GEF [LARG]), a RhoA GEF, is highly expressed in platelets and may constitute a major upstream activator of RhoA. To this end, it is important to determine the role of LARG in platelet function and thrombosis.<h4>Methods and results</h4>Using a platelet-specific gene knockout, we show th ...[more]