Unknown

Dataset Information

0

Definitive Hematopoiesis in the Yolk Sac Emerges from Wnt-Responsive Hemogenic Endothelium Independently of Circulation and Arterial Identity.


ABSTRACT: Adult-repopulating hematopoietic stem cells (HSCs) emerge in low numbers in the midgestation mouse embryo from a subset of arterial endothelium, through an endothelial-to-hematopoietic transition. HSC-producing arterial hemogenic endothelium relies on the establishment of embryonic blood flow and arterial identity, and requires ?-catenin signaling. Specified prior to and during the formation of these initial HSCs are thousands of yolk sac-derived erythro-myeloid progenitors (EMPs). EMPs ensure embryonic survival prior to the establishment of a permanent hematopoietic system, and provide subsets of long-lived tissue macrophages. While an endothelial origin for these HSC-independent definitive progenitors is also accepted, the spatial location and temporal output of yolk sac hemogenic endothelium over developmental time remain undefined. We performed a spatiotemporal analysis of EMP emergence, and document the morphological steps of the endothelial-to-hematopoietic transition. Emergence of rounded EMPs from polygonal clusters of Kit(+) cells initiates prior to the establishment of arborized arterial and venous vasculature in the yolk sac. Interestingly, Kit(+) polygonal clusters are detected in both arterial and venous vessels after remodeling. To determine whether there are similar mechanisms regulating the specification of EMPs with other angiogenic signals regulating adult-repopulating HSCs, we investigated the role of embryonic blood flow and Wnt/?-catenin signaling during EMP emergence. In embryos lacking a functional circulation, rounded Kit(+) EMPs still fully emerge from unremodeled yolk sac vasculature. In contrast, canonical Wnt signaling appears to be a common mechanism regulating hematopoietic emergence from hemogenic endothelium. These data illustrate the heterogeneity in hematopoietic output and spatiotemporal regulation of primary embryonic hemogenic endothelium.

SUBMITTER: Frame JM 

PROVIDER: S-EPMC4755868 | biostudies-literature | 2016 Feb

REPOSITORIES: biostudies-literature

altmetric image

Publications

Definitive Hematopoiesis in the Yolk Sac Emerges from Wnt-Responsive Hemogenic Endothelium Independently of Circulation and Arterial Identity.

Frame Jenna M JM   Fegan Katherine H KH   Conway Simon J SJ   McGrath Kathleen E KE   Palis James J  

Stem cells (Dayton, Ohio) 20151023 2


Adult-repopulating hematopoietic stem cells (HSCs) emerge in low numbers in the midgestation mouse embryo from a subset of arterial endothelium, through an endothelial-to-hematopoietic transition. HSC-producing arterial hemogenic endothelium relies on the establishment of embryonic blood flow and arterial identity, and requires β-catenin signaling. Specified prior to and during the formation of these initial HSCs are thousands of yolk sac-derived erythro-myeloid progenitors (EMPs). EMPs ensure e  ...[more]

Similar Datasets

| S-EPMC6940422 | biostudies-literature
| S-EPMC6234921 | biostudies-literature
| S-EPMC3029764 | biostudies-literature
| S-EPMC7988717 | biostudies-literature
| S-EPMC10065832 | biostudies-literature
| S-EPMC4207476 | biostudies-literature
| S-EPMC5940870 | biostudies-literature
| S-EPMC3050502 | biostudies-literature
| S-EPMC6410360 | biostudies-literature
| S-EPMC4618836 | biostudies-literature