Unknown

Dataset Information

0

Monoclonal Antibody Targeting Staphylococcus aureus Surface Protein A (SasA) Protect Against Staphylococcus aureus Sepsis and Peritonitis in Mice.


ABSTRACT: Epidemic methicillin-resistant Staphylococcus aureus (MRSA) imposes an increasing impact on public health. Due to multi-antibiotics resistance in MRSA strains, there is an urgent need to develop novel therapeutics such as effective monoclonal antibodies (mAbs) against MRSA infections. Staphylococcus aureus surface protein A (SasA), a large surface-located protein (~240 kDa), is one of MSCRAMMs (microbial surface components recognizing adhesive matrix molecules) and a potential target for immunotherapeutic approaches against S. aureus infections. In the present study, we analyzed the sequence of SasA with bioinformatics tools and generated a protective monoclonal antibody (2H7) targeting the conserved domain of SasA. 2H7 was shown to recognize wild-type S. aureus and promote opsonophagocytic killing of S. aureus. In both sepsis and peritoneal infection models, prophylactic administration of 2H7 improved the survival of BALB/c mice challenged by S. aureus strain USA300 and ST239 (prevalent MRSA clones in North America and Asian countries, respectively) and enhanced bacterial clearance in kidneys. Additionally, 2H7 prophylaxis prevented the formation of intraperitoneal abscess in a murine model of peritoneal infection and therapeutic administration of 2H7 showed protective efficacy in a murine sepsis model. Our results presented here provide supporting evidences that an anti-SasA mAb might be a potential component in an antibody-based immunotherapeutic treatment of MRSA infections.

SUBMITTER: Yang Y 

PROVIDER: S-EPMC4771200 | biostudies-literature | 2016

REPOSITORIES: biostudies-literature

altmetric image

Publications

Monoclonal Antibody Targeting Staphylococcus aureus Surface Protein A (SasA) Protect Against Staphylococcus aureus Sepsis and Peritonitis in Mice.

Yang Yilong Y   Qian Mengying M   Yi Shaoqiong S   Liu Shuling S   Li Bing B   Yu Rui R   Guo Qiang Q   Zhang Xiaopeng X   Yu Changming C   Li Jianmin J   Xu Junjie J   Chen Wei W  

PloS one 20160229 2


Epidemic methicillin-resistant Staphylococcus aureus (MRSA) imposes an increasing impact on public health. Due to multi-antibiotics resistance in MRSA strains, there is an urgent need to develop novel therapeutics such as effective monoclonal antibodies (mAbs) against MRSA infections. Staphylococcus aureus surface protein A (SasA), a large surface-located protein (~240 kDa), is one of MSCRAMMs (microbial surface components recognizing adhesive matrix molecules) and a potential target for immunot  ...[more]

Similar Datasets

| S-EPMC5783355 | biostudies-literature
| S-EPMC5626247 | biostudies-literature
| S-EPMC4657049 | biostudies-literature
| S-EPMC7184913 | biostudies-literature
| S-EPMC4937210 | biostudies-other
| S-EPMC3836467 | biostudies-literature
| S-EPMC6880988 | biostudies-literature
| S-EPMC5045189 | biostudies-literature
| S-EPMC5643955 | biostudies-literature
| S-EPMC6658795 | biostudies-literature