Unknown

Dataset Information

0

Evolutionary and Functional Relationships of the dha Regulon by Genomic Context Analysis.


ABSTRACT: 3-hydroxypropionaldehyde (3-HPA) and 1,3-propanediol (1,3-PD) are subproducts of glycerol degradation and of economical interest as they are used for polymers synthesis, such as polyesters and polyurethanes. Some few characterized bacterial species (mostly from Firmicutes and Gamma-proteobacteria groups) are able to catabolize these monomers from glycerol using the gene products from the dha regulon. To expand our knowledge and direct further experimental studies on the regulon and related genes for the anaerobic glycerol metabolism, an extensive genomic screening was performed to identify the presence of the dha genes in fully sequenced prokaryotic genomes. Interestingly, this work shows that although only few bacteria species are known to produce 3-HPA or 1,3-PD, the incomplete regulon is found in more than 100 prokaryotic genomes. However, the complete pathway is found only in a few dozen species belonging to five different taxonomic groups, including one Archaea species, Halalkalicoccus jeotgali. Phylogenetic analysis and conservation of both gene synteny and primary sequence similarity reinforce the idea that these genes have a common origin and were possibly acquired by lateral gene transfer (LGT). Besides the evolutionary aspect, the identification of homologs from several different organisms may predict potential alternative targets for faster or more efficient biological synthesis of 3-HPA or 1,3-PD.

SUBMITTER: Martins-Pinheiro M 

PROVIDER: S-EPMC4777399 | biostudies-literature | 2016

REPOSITORIES: biostudies-literature

altmetric image

Publications

Evolutionary and Functional Relationships of the dha Regulon by Genomic Context Analysis.

Martins-Pinheiro Marinalva M   Lima Wanessa C WC   Asif Huma H   Oller Cláudio A CA   Menck Carlos F M CF  

PloS one 20160303 3


3-hydroxypropionaldehyde (3-HPA) and 1,3-propanediol (1,3-PD) are subproducts of glycerol degradation and of economical interest as they are used for polymers synthesis, such as polyesters and polyurethanes. Some few characterized bacterial species (mostly from Firmicutes and Gamma-proteobacteria groups) are able to catabolize these monomers from glycerol using the gene products from the dha regulon. To expand our knowledge and direct further experimental studies on the regulon and related genes  ...[more]

Similar Datasets

| S-EPMC9252766 | biostudies-literature
| S-EPMC6507118 | biostudies-literature
| S-EPMC5596368 | biostudies-literature
| S-EPMC385224 | biostudies-literature
| S-EPMC535681 | biostudies-literature
| S-EPMC4295529 | biostudies-literature
| S-EPMC7527552 | biostudies-literature
| S-EPMC4664979 | biostudies-literature
| S-EPMC1276791 | biostudies-literature
| S-EPMC4720485 | biostudies-literature