Unknown

Dataset Information

0

Can ecosystem-scale translocations mitigate the impact of climate change on terrestrial biodiversity? Promises, pitfalls, and possibilities: Ecosystem-scale translocations.


ABSTRACT: Because ecological interactions are the first components of the ecosystem to be impacted by climate change, future forms of threatened-species and ecosystem management should aim at conserving complete, functioning communities rather than single charismatic species. A possible way forward is the deployment of ecosystem-scale translocation (EST), where above- and below-ground elements of a functioning terrestrial ecosystem (including vegetation and topsoil) are carefully collected and moved together. Small-scale attempts at such practice have been made for the purpose of ecological restoration. By moving larger subsets of functioning ecosystems from climatically unstable regions to more stable ones, EST could provide a practical means to conserve mature and complex ecosystems threatened by climate change. However, there are a number of challenges associated with EST in the context of climate change mitigation, in particular the choice of donor and receptor sites. With the aim of fostering discussion and debate about the EST concept, we  1) outline the possible promises and pitfalls of EST in mitigating the impact of climate change on terrestrial biodiversity and 2) use a GIS-based approach to illustrate how  potential source and receptor sites, where EST could be trialed and evaluated globally, could be identified.

SUBMITTER: Boyer S 

PROVIDER: S-EPMC4784018 | biostudies-literature | 2016

REPOSITORIES: biostudies-literature

altmetric image

Publications

Can ecosystem-scale translocations mitigate the impact of climate change on terrestrial biodiversity? Promises, pitfalls, and possibilities: Ecosystem-scale translocations.

Boyer Stéphane S   Case Bradley S BS   Lefort Marie-Caroline MC   Waterhouse Benjamin R BR   Wratten Stephen D SD  

F1000Research 20160208


Because ecological interactions are the first components of the ecosystem to be impacted by climate change, future forms of threatened-species and ecosystem management should aim at conserving complete, functioning communities rather than single charismatic species. A possible way forward is the deployment of ecosystem-scale translocation (EST), where above- and below-ground elements of a functioning terrestrial ecosystem (including vegetation and topsoil) are carefully collected and moved toget  ...[more]

Similar Datasets

| S-EPMC9237054 | biostudies-literature
| S-EPMC6099882 | biostudies-other
| S-EPMC5192800 | biostudies-other
| S-EPMC3592970 | biostudies-literature
| S-EPMC4669049 | biostudies-literature
| S-EPMC4955578 | biostudies-literature
| S-EPMC4377835 | biostudies-literature
| S-EPMC4166028 | biostudies-other
| S-EPMC5745303 | biostudies-literature
| S-EPMC5491836 | biostudies-literature