Unknown

Dataset Information

0

Formin Is Associated with Left-Right Asymmetry in the Pond Snail and the Frog.


ABSTRACT: While components of the pathway that establishes left-right asymmetry have been identified in diverse animals, from vertebrates to flies, it is striking that the genes involved in the first symmetry-breaking step remain wholly unknown in the most obviously chiral animals, the gastropod snails. Previously, research on snails was used to show that left-right signaling of Nodal, downstream of symmetry breaking, may be an ancestral feature of the Bilateria [1 and 2]. Here, we report that a disabling mutation in one copy of a tandemly duplicated, diaphanous-related formin is perfectly associated with symmetry breaking in the pond snail. This is supported by the observation that an anti-formin drug treatment converts dextral snail embryos to a sinistral phenocopy, and in frogs, drug inhibition or overexpression by microinjection of formin has a chirality-randomizing effect in early (pre-cilia) embryos. Contrary to expectations based on existing models [3, 4 and 5], we discovered asymmetric gene expression in 2- and 4-cell snail embryos, preceding morphological asymmetry. As the formin-actin filament has been shown to be part of an asymmetry-breaking switch in vitro [6 and 7], together these results are consistent with the view that animals with diverse body plans may derive their asymmetries from the same intracellular chiral elements [8].

SUBMITTER: Davison A 

PROVIDER: S-EPMC4791482 | biostudies-literature | 2016 Mar

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC3741322 | biostudies-literature
| S-EPMC5084438 | biostudies-literature
| S-EPMC1502452 | biostudies-literature
| S-EPMC4469357 | biostudies-literature
| S-EPMC3671612 | biostudies-literature
| S-EPMC5641680 | biostudies-literature
| S-EPMC2714534 | biostudies-literature
| S-EPMC5992533 | biostudies-literature
| S-EPMC3145729 | biostudies-literature
| S-EPMC3876215 | biostudies-literature