Unknown

Dataset Information

0

A de novo transcriptome of the Malpighian tubules in non-blood-fed and blood-fed Asian tiger mosquitoes Aedes albopictus: insights into diuresis, detoxification, and blood meal processing.


ABSTRACT: Background. In adult female mosquitoes, the renal (Malpighian) tubules play an important role in the post-prandial diuresis, which removes excess ions and water from the hemolymph of mosquitoes following a blood meal. After the post-prandial diuresis, the roles that Malpighian tubules play in the processing of blood meals are not well described. Methods. We used a combination of next-generation sequencing (paired-end RNA sequencing) and physiological/biochemical assays in adult female Asian tiger mosquitoes (Aedes albopictus) to generate molecular and functional insights into the Malpighian tubules and how they may contribute to blood meal processing (3-24 h after blood ingestion). Results/Discussion. Using RNA sequencing, we sequenced and assembled the first de novo transcriptome of Malpighian tubules from non-blood-fed (NBF) and blood-fed (BF) mosquitoes. We identified a total of 8,232 non-redundant transcripts. The Malpighian tubules of NBF mosquitoes were characterized by the expression of transcripts associated with active transepithelial fluid secretion/diuresis (e.g., ion transporters, water channels, V-type H(+)-ATPase subunits), xenobiotic detoxification (e.g., cytochrome P450 monoxygenases, glutathione S-transferases, ATP-binding cassette transporters), and purine metabolism (e.g., xanthine dehydrogenase). We also detected the expression of transcripts encoding sodium calcium exchangers, G protein coupled-receptors, and septate junctional proteins not previously described in mosquito Malpighian tubules. Within 24 h after a blood meal, transcripts associated with active transepithelial fluid secretion/diuresis exhibited a general downregulation, whereas those associated with xenobiotic detoxification and purine catabolism exhibited a general upregulation, suggesting a reinvestment of the Malpighian tubules' molecular resources from diuresis to detoxification. Physiological and biochemical assays were conducted in mosquitoes and isolated Malpighian tubules, respectively, to confirm that the transcriptomic changes were associated with functional consequences. In particular, in vivo diuresis assays demonstrated that adult female mosquitoes have a reduced diuretic capacity within 24 h after a blood meal. Moreover, biochemical assays in isolated Malpighian tubules showed an increase in glutathione S-transferase activity and the accumulation of uric acid (an end product of purine catabolism) within 24 h after a blood meal. Our data provide new insights into the molecular physiology of Malpighian tubules in culicine mosquitoes and reveal potentially important molecular targets for the development of chemical and/or gene-silencing insecticides that would disrupt renal function in mosquitoes.

SUBMITTER: Esquivel CJ 

PROVIDER: S-EPMC4793337 | biostudies-literature | 2016

REPOSITORIES: biostudies-literature

altmetric image

Publications

A de novo transcriptome of the Malpighian tubules in non-blood-fed and blood-fed Asian tiger mosquitoes Aedes albopictus: insights into diuresis, detoxification, and blood meal processing.

Esquivel Carlos J CJ   Cassone Bryan J BJ   Piermarini Peter M PM  

PeerJ 20160310


Background. In adult female mosquitoes, the renal (Malpighian) tubules play an important role in the post-prandial diuresis, which removes excess ions and water from the hemolymph of mosquitoes following a blood meal. After the post-prandial diuresis, the roles that Malpighian tubules play in the processing of blood meals are not well described. Methods. We used a combination of next-generation sequencing (paired-end RNA sequencing) and physiological/biochemical assays in adult female Asian tige  ...[more]

Similar Datasets

| S-EPMC4046972 | biostudies-literature
| S-EPMC10926411 | biostudies-literature
| S-EPMC6168791 | biostudies-literature
| S-EPMC9269769 | biostudies-literature
| S-EPMC7525526 | biostudies-literature
| S-EPMC5746805 | biostudies-literature
2023-02-28 | GSE217289 | GEO
| S-EPMC4405372 | biostudies-literature
| S-EPMC8839535 | biostudies-literature
| S-EPMC3787086 | biostudies-literature