Unknown

Dataset Information

0

Crowding Activates Heat Shock Protein 90.


ABSTRACT: Hsp90 is a dimeric ATP-dependent chaperone involved in the folding, maturation, and activation of diverse target proteins. Extensive in vitro structural analysis has led to a working model of Hsp90's ATP-driven conformational cycle. An implicit assumption is that dilute experimental conditions do not significantly perturb Hsp90 structure and function. However, Hsp90 undergoes a dramatic open/closed conformational change, which raises the possibility that this assumption may not be valid for this chaperone. Indeed, here we show that the ATPase activity of Hsp90 is highly sensitive to molecular crowding, whereas the ATPase activities of Hsp60 and Hsp70 chaperones are insensitive to crowding conditions. Polymer crowders activate Hsp90 in a non-saturable manner, with increasing efficacy at increasing concentration. Crowders exhibit a non-linear relationship between their radius of gyration and the extent to which they activate Hsp90. This experimental relationship can be qualitatively recapitulated with simple structure-based volume calculations comparing open/closed configurations of Hsp90. Thermodynamic analysis indicates that crowding activation of Hsp90 is entropically driven, which is consistent with a model in which excluded volume provides a driving force that favors the closed active state of Hsp90. Multiple Hsp90 homologs are activated by crowders, with the endoplasmic reticulum-specific Hsp90, Grp94, exhibiting the highest sensitivity. Finally, we find that crowding activation works by a different mechanism than co-chaperone activation and that these mechanisms are independent. We hypothesize that Hsp90 has a higher intrinsic activity in the cell than in vitro.

SUBMITTER: Halpin JC 

PROVIDER: S-EPMC4813586 | biostudies-literature | 2016 Mar

REPOSITORIES: biostudies-literature

altmetric image

Publications

Crowding Activates Heat Shock Protein 90.

Halpin Jackson C JC   Huang Bin B   Sun Ming M   Street Timothy O TO  

The Journal of biological chemistry 20160121 12


Hsp90 is a dimeric ATP-dependent chaperone involved in the folding, maturation, and activation of diverse target proteins. Extensive in vitro structural analysis has led to a working model of Hsp90's ATP-driven conformational cycle. An implicit assumption is that dilute experimental conditions do not significantly perturb Hsp90 structure and function. However, Hsp90 undergoes a dramatic open/closed conformational change, which raises the possibility that this assumption may not be valid for this  ...[more]

Similar Datasets

| S-EPMC1218042 | biostudies-other
| S-EPMC4602144 | biostudies-literature
| S-EPMC1895907 | biostudies-literature
| S-EPMC2716925 | biostudies-other
| S-EPMC5053942 | biostudies-literature
| S-EPMC7058811 | biostudies-literature
| S-EPMC4429810 | biostudies-literature
| S-EPMC3816649 | biostudies-literature
| S-EPMC3384095 | biostudies-literature
| S-EPMC2760286 | biostudies-literature