Unknown

Dataset Information

0

Engineering T Cells to Functionally Cure HIV-1 Infection.


ABSTRACT: Despite the ability of antiretroviral therapy to minimize human immunodeficiency virus type 1 (HIV-1) replication and increase the duration and quality of patients' lives, the health consequences and financial burden associated with the lifelong treatment regimen render a permanent cure highly attractive. Although T cells play an important role in controlling virus replication, they are themselves targets of HIV-mediated destruction. Direct genetic manipulation of T cells for adoptive cellular therapies could facilitate a functional cure by generating HIV-1-resistant cells, redirecting HIV-1-specific immune responses, or a combination of the two strategies. In contrast to a vaccine approach, which relies on the production and priming of HIV-1-specific lymphocytes within a patient's own body, adoptive T-cell therapy provides an opportunity to customize the therapeutic T cells prior to administration. However, at present, it is unclear how to best engineer T cells so that sustained control over HIV-1 replication can be achieved in the absence of antiretrovirals. This review focuses on T-cell gene-engineering and gene-editing strategies that have been performed in efforts to inhibit HIV-1 replication and highlights the requirements for a successful gene therapy-mediated functional cure.

SUBMITTER: Leibman RS 

PROVIDER: S-EPMC4817793 | biostudies-literature | 2015 Jul

REPOSITORIES: biostudies-literature

altmetric image

Publications

Engineering T Cells to Functionally Cure HIV-1 Infection.

Leibman Rachel S RS   Riley James L JL  

Molecular therapy : the journal of the American Society of Gene Therapy 20150421 7


Despite the ability of antiretroviral therapy to minimize human immunodeficiency virus type 1 (HIV-1) replication and increase the duration and quality of patients' lives, the health consequences and financial burden associated with the lifelong treatment regimen render a permanent cure highly attractive. Although T cells play an important role in controlling virus replication, they are themselves targets of HIV-mediated destruction. Direct genetic manipulation of T cells for adoptive cellular t  ...[more]

Similar Datasets

| S-EPMC5694689 | biostudies-literature
| S-EPMC4635699 | biostudies-literature
| S-EPMC7019976 | biostudies-literature
| S-EPMC6539195 | biostudies-literature
| S-EPMC3730421 | biostudies-other
| S-EPMC8750418 | biostudies-literature
| S-EPMC7222980 | biostudies-literature
| S-EPMC6124426 | biostudies-literature
| S-EPMC9215120 | biostudies-literature
| S-EPMC7343933 | biostudies-literature