Unknown

Dataset Information

0

A Molecular Chipper technology for CRISPR sgRNA library generation and functional mapping of noncoding regions.


ABSTRACT: Clustered regularly-interspaced palindromic repeats (CRISPR)-based genetic screens using single-guide-RNA (sgRNA) libraries have proven powerful to identify genetic regulators. Applying CRISPR screens to interrogate functional elements in noncoding regions requires generating sgRNA libraries that are densely covering, and ideally inexpensive, easy to implement and flexible for customization. Here we present a Molecular Chipper technology for generating dense sgRNA libraries for genomic regions of interest, and a proof-of-principle screen that identifies novel cis-regulatory domains for miR-142 biogenesis. The Molecular Chipper approach utilizes a combination of random fragmentation and a type III restriction enzyme to derive a densely covering sgRNA library from input DNA. Applying this approach to 17 microRNAs and their flanking regions and with a reporter for miR-142 activity, we identify both the pre-miR-142 region and two previously unrecognized cis-domains important for miR-142 biogenesis, with the latter regulating miR-142 processing. This strategy will be useful for identifying functional noncoding elements in mammalian genomes.

SUBMITTER: Cheng J 

PROVIDER: S-EPMC4820989 | biostudies-literature | 2016 Mar

REPOSITORIES: biostudies-literature

altmetric image

Publications

A Molecular Chipper technology for CRISPR sgRNA library generation and functional mapping of noncoding regions.

Cheng Jijun J   Roden Christine A CA   Pan Wen W   Zhu Shu S   Baccei Anna A   Pan Xinghua X   Jiang Tingting T   Kluger Yuval Y   Weissman Sherman M SM   Guo Shangqin S   Flavell Richard A RA   Ding Ye Y   Lu Jun J  

Nature communications 20160330


Clustered regularly-interspaced palindromic repeats (CRISPR)-based genetic screens using single-guide-RNA (sgRNA) libraries have proven powerful to identify genetic regulators. Applying CRISPR screens to interrogate functional elements in noncoding regions requires generating sgRNA libraries that are densely covering, and ideally inexpensive, easy to implement and flexible for customization. Here we present a Molecular Chipper technology for generating dense sgRNA libraries for genomic regions o  ...[more]

Similar Datasets

| S-EPMC6468733 | biostudies-literature
| S-EPMC7607627 | biostudies-literature
| S-EPMC5564686 | biostudies-other
| S-EPMC7686728 | biostudies-literature
| S-EPMC4273605 | biostudies-literature
| S-EPMC7560704 | biostudies-literature
2016-03-17 | GSE70011 | GEO
| PRJEB73744 | ENA
| S-EPMC10354020 | biostudies-literature