Unknown

Dataset Information

0

Optogenetic Approaches to Target Specific Neural Circuits in Post-stroke Recovery.


ABSTRACT: Stroke is a leading cause of death and disability in the USA, yet treatment options are very limited. Functional recovery can occur after stroke and is attributed, in part, to rewiring of neural connections in areas adjacent to or remotely connected to the infarct. A better understanding of neural circuit rewiring is thus an important step toward developing future therapeutic strategies for stroke recovery. Because stroke disrupts functional connections in peri-infarct and remotely connected regions, it is important to investigate brain-wide network dynamics during post-stroke recovery. Optogenetics is a revolutionary neuroscience tool that uses bioengineered light-sensitive proteins to selectively activate or inhibit specific cell types and neural circuits within milliseconds, allowing greater specificity and temporal precision for dissecting neural circuit mechanisms in diseases. In this review, we discuss the current view of post-stroke remapping and recovery, including recent studies that use optogenetics to investigate neural circuit remapping after stroke, as well as optogenetic stimulation to enhance stroke recovery. Multimodal approaches employing optogenetics in conjunction with other readouts (e.g., in vivo neuroimaging techniques, behavior assays, and next-generation sequencing) will advance our understanding of neural circuit reorganization during post-stroke recovery, as well as provide important insights into which brain circuits to target when designing brain stimulation strategies for future clinical studies.

SUBMITTER: Cheng MY 

PROVIDER: S-EPMC4824024 | biostudies-literature | 2016 Apr

REPOSITORIES: biostudies-literature

altmetric image

Publications

Optogenetic Approaches to Target Specific Neural Circuits in Post-stroke Recovery.

Cheng Michelle Y MY   Aswendt Markus M   Steinberg Gary K GK  

Neurotherapeutics : the journal of the American Society for Experimental NeuroTherapeutics 20160401 2


Stroke is a leading cause of death and disability in the USA, yet treatment options are very limited. Functional recovery can occur after stroke and is attributed, in part, to rewiring of neural connections in areas adjacent to or remotely connected to the infarct. A better understanding of neural circuit rewiring is thus an important step toward developing future therapeutic strategies for stroke recovery. Because stroke disrupts functional connections in peri-infarct and remotely connected reg  ...[more]

Similar Datasets

| S-EPMC9206968 | biostudies-literature
| S-EPMC5928259 | biostudies-literature
| S-EPMC3751580 | biostudies-literature
| S-EPMC4156770 | biostudies-literature
| S-EPMC4820717 | biostudies-literature
| S-EPMC9217134 | biostudies-literature
| S-EPMC6941484 | biostudies-literature
| S-EPMC8766309 | biostudies-literature
| S-EPMC5490053 | biostudies-literature
| S-EPMC4004172 | biostudies-literature