Unknown

Dataset Information

0

Self-Assembled Multifunctional Hybrids: Toward Developing High-Performance Graphene-Based Architectures for Energy Storage Devices.


ABSTRACT: The prospect of developing multifunctional flexible three-dimensional (3D) architectures based on integrative chemistry for lightweight, foldable, yet robust, electronic components that can turn the many promises of graphene-based devices into reality is an exciting direction that has yet to be explored. Herein, inspired by nature, we demonstrate that through a simple, yet novel solvophobic self-assembly processing approach, nacre-mimicking, layer-by-layer grown, hybrid composite materials (consisting of graphene oxide, carbon nanotubes, and conducting polymers) can be made that can incorporate many of the exciting attributes of graphene into real world materials. The as-produced, self-assembled 3D multifunctional architectures were found to be flexible, yet mechanically robust and tough (Young's modulus in excess of 26.1 GPa, tensile strength of around 252 MPa, and toughness of 7.3 MJ m(-3)), and exhibited high native electrical conductivity (38700 S m(-1)) and unrivalled volumetric capacitance values (761 F cm(-3)) with excellent cyclability and rate performance.

SUBMITTER: Islam MM 

PROVIDER: S-EPMC4827461 | biostudies-literature | 2015 Jul

REPOSITORIES: biostudies-literature

altmetric image

Publications

Self-Assembled Multifunctional Hybrids: Toward Developing High-Performance Graphene-Based Architectures for Energy Storage Devices.

Islam Md Monirul MM   Aboutalebi Seyed Hamed SH   Cardillo Dean D   Liu Hua Kun HK   Konstantinov Konstantin K   Dou Shi Xue SX  

ACS central science 20150702 4


The prospect of developing multifunctional flexible three-dimensional (3D) architectures based on integrative chemistry for lightweight, foldable, yet robust, electronic components that can turn the many promises of graphene-based devices into reality is an exciting direction that has yet to be explored. Herein, inspired by nature, we demonstrate that through a simple, yet novel solvophobic self-assembly processing approach, nacre-mimicking, layer-by-layer grown, hybrid composite materials (cons  ...[more]

Similar Datasets

| S-EPMC5361393 | biostudies-literature
| S-EPMC6204351 | biostudies-literature
| S-EPMC7287821 | biostudies-literature
| S-EPMC7040781 | biostudies-literature
| S-EPMC10372556 | biostudies-literature
| S-EPMC5708273 | biostudies-literature
| S-EPMC2799859 | biostudies-literature
| S-EPMC7770976 | biostudies-literature
| S-EPMC9967960 | biostudies-literature
| S-EPMC1959422 | biostudies-literature