Unknown

Dataset Information

0

Functional Regression Models for Epistasis Analysis of Multiple Quantitative Traits.


ABSTRACT: To date, most genetic analyses of phenotypes have focused on analyzing single traits or analyzing each phenotype independently. However, joint epistasis analysis of multiple complementary traits will increase statistical power and improve our understanding of the complicated genetic structure of the complex diseases. Despite their importance in uncovering the genetic structure of complex traits, the statistical methods for identifying epistasis in multiple phenotypes remains fundamentally unexplored. To fill this gap, we formulate a test for interaction between two genes in multiple quantitative trait analysis as a multiple functional regression (MFRG) in which the genotype functions (genetic variant profiles) are defined as a function of the genomic position of the genetic variants. We use large-scale simulations to calculate Type I error rates for testing interaction between two genes with multiple phenotypes and to compare the power with multivariate pairwise interaction analysis and single trait interaction analysis by a single variate functional regression model. To further evaluate performance, the MFRG for epistasis analysis is applied to five phenotypes of exome sequence data from the NHLBI's Exome Sequencing Project (ESP) to detect pleiotropic epistasis. A total of 267 pairs of genes that formed a genetic interaction network showed significant evidence of epistasis influencing five traits. The results demonstrate that the joint interaction analysis of multiple phenotypes has a much higher power to detect interaction than the interaction analysis of a single trait and may open a new direction to fully uncovering the genetic structure of multiple phenotypes.

SUBMITTER: Zhang F 

PROVIDER: S-EPMC4841563 | biostudies-literature | 2016 Apr

REPOSITORIES: biostudies-literature

altmetric image

Publications

Functional Regression Models for Epistasis Analysis of Multiple Quantitative Traits.

Zhang Futao F   Zhang Futao F   Xie Dan D   Liang Meimei M   Xiong Momiao M  

PLoS genetics 20160422 4


To date, most genetic analyses of phenotypes have focused on analyzing single traits or analyzing each phenotype independently. However, joint epistasis analysis of multiple complementary traits will increase statistical power and improve our understanding of the complicated genetic structure of the complex diseases. Despite their importance in uncovering the genetic structure of complex traits, the statistical methods for identifying epistasis in multiple phenotypes remains fundamentally unexpl  ...[more]

Similar Datasets

| S-EPMC4446790 | biostudies-literature
| S-EPMC4163942 | biostudies-literature
| S-EPMC5433158 | biostudies-literature
| S-EPMC4574252 | biostudies-literature
| S-EPMC5436462 | biostudies-literature
| S-EPMC4443751 | biostudies-literature
| S-EPMC3465439 | biostudies-literature
| S-EPMC5550000 | biostudies-literature
| S-EPMC1513264 | biostudies-literature
| S-EPMC5315507 | biostudies-literature