Unknown

Dataset Information

0

Moonlighting transcriptional activation function of a fungal sulfur metabolism enzyme.


ABSTRACT: Moonlighting proteins, including metabolic enzymes acting as transcription factors (TF), are present in a variety of organisms but have not been described in higher fungi so far. In a previous genome-wide analysis of the TF repertoire of the plant-symbiotic fungus Tuber melanosporum, we identified various enzymes, including the sulfur-assimilation enzyme phosphoadenosine-phosphosulfate reductase (PAPS-red), as potential transcriptional activators. A functional analysis performed in the yeast Saccharomyces cerevisiae, now demonstrates that a specific variant of this enzyme, PAPS-red A, localizes to the nucleus and is capable of transcriptional activation. TF moonlighting, which is not present in the other enzyme variant (PAPS-red B) encoded by the T. melanosporum genome, relies on a transplantable C-terminal polypeptide containing an alternating hydrophobic/hydrophilic amino acid motif. A similar moonlighting activity was demonstrated for six additional proteins, suggesting that multitasking is a relatively frequent event. PAPS-red A is sulfur-state-responsive and highly expressed, especially in fruitbodies, and likely acts as a recruiter of transcription components involved in S-metabolism gene network activation. PAPS-red B, instead, is expressed at low levels and localizes to a highly methylated and silenced region of the genome, hinting at an evolutionary mechanism based on gene duplication, followed by epigenetic silencing of this non-moonlighting gene variant.

SUBMITTER: Levati E 

PROVIDER: S-EPMC4848566 | biostudies-literature | 2016 Apr

REPOSITORIES: biostudies-literature

altmetric image

Publications

Moonlighting transcriptional activation function of a fungal sulfur metabolism enzyme.

Levati Elisabetta E   Sartini Sara S   Bolchi Angelo A   Ottonello Simone S   Montanini Barbara B  

Scientific reports 20160428


Moonlighting proteins, including metabolic enzymes acting as transcription factors (TF), are present in a variety of organisms but have not been described in higher fungi so far. In a previous genome-wide analysis of the TF repertoire of the plant-symbiotic fungus Tuber melanosporum, we identified various enzymes, including the sulfur-assimilation enzyme phosphoadenosine-phosphosulfate reductase (PAPS-red), as potential transcriptional activators. A functional analysis performed in the yeast Sac  ...[more]

Similar Datasets

| S-EPMC3723540 | biostudies-literature
| S-EPMC3842258 | biostudies-literature
| S-EPMC3396687 | biostudies-literature
| S-EPMC5155445 | biostudies-literature
| S-EPMC7435893 | biostudies-literature
| S-EPMC6321594 | biostudies-literature
| S-EPMC369615 | biostudies-other
| S-EPMC3733257 | biostudies-literature
| S-EPMC3597657 | biostudies-literature
| S-EPMC5086585 | biostudies-literature