Unknown

Dataset Information

0

3D Magnetic Induction Maps of Nanoscale Materials Revealed by Electron Holographic Tomography.


ABSTRACT: The investigation of three-dimensional (3D) ferromagnetic nanoscale materials constitutes one of the key research areas of the current magnetism roadmap and carries great potential to impact areas such as data storage, sensing, and biomagnetism. The properties of such nanostructures are closely connected with their 3D magnetic nanostructure, making their determination highly valuable. Up to now, quantitative 3D maps providing both the internal magnetic and electric configuration of the same specimen with high spatial resolution are missing. Here, we demonstrate the quantitative 3D reconstruction of the dominant axial component of the magnetic induction and electrostatic potential within a cobalt nanowire (NW) of 100 nm in diameter with spatial resolution below 10 nm by applying electron holographic tomography. The tomogram was obtained using a dedicated TEM sample holder for acquisition, in combination with advanced alignment and tomographic reconstruction routines. The powerful approach presented here is widely applicable to a broad range of 3D magnetic nanostructures and may trigger the progress of novel spintronic nonplanar nanodevices.

SUBMITTER: Wolf D 

PROVIDER: S-EPMC4862384 | biostudies-literature | 2015 Oct

REPOSITORIES: biostudies-literature

altmetric image

Publications

3D Magnetic Induction Maps of Nanoscale Materials Revealed by Electron Holographic Tomography.

Wolf Daniel D   Rodriguez Luis A LA   Béché Armand A   Javon Elsa E   Serrano Luis L   Magen Cesar C   Gatel Christophe C   Lubk Axel A   Lichte Hannes H   Bals Sara S   Van Tendeloo Gustaaf G   Fernández-Pacheco Amalio A   De Teresa José M JM   Snoeck Etienne E  

Chemistry of materials : a publication of the American Chemical Society 20150908 19


The investigation of three-dimensional (3D) ferromagnetic nanoscale materials constitutes one of the key research areas of the current magnetism roadmap and carries great potential to impact areas such as data storage, sensing, and biomagnetism. The properties of such nanostructures are closely connected with their 3D magnetic nanostructure, making their determination highly valuable. Up to now, quantitative 3D maps providing both the internal magnetic and electric configuration of the same spec  ...[more]

Similar Datasets

| S-EPMC9912371 | biostudies-literature
| S-EPMC2755602 | biostudies-literature
| S-EPMC11228483 | biostudies-literature
| S-EPMC4419541 | biostudies-literature
| S-EPMC10519085 | biostudies-literature
| S-EPMC6933316 | biostudies-literature
| S-EPMC4448178 | biostudies-literature
| S-EPMC5613010 | biostudies-literature
| S-EPMC2876950 | biostudies-literature
| S-EPMC6338664 | biostudies-literature