Macromolecular Crystallography and Structural Biology Databases at NIST.
Ontology highlight
ABSTRACT: In the late 1970s, macromolecular crystallography at NIST began with collaboration between NIST and NIH to establish a single-crystal neutron diffractometer. This instrument was constructed and employed to solve a number of crystal structures: bovine ribonuclease A, bovine-ribonuclease-uridine vanadate complex, and porcine insulin. In the mid 1980s a Biomolecular Structure Group was created establishing NIST capabilities in biomolecular singe-crystal x-ray diffraction. The group worked on a variety of structural problems until joining the NIST/UMBI Center for Advanced Research in Biotechnology (CARB) in 1987. Crystallographic studies at CARB were then focused on protein engineering efforts that included among others chymosin, subtilisin BPN', interleukin 1?, and glutathione S-transferase. Recently, the structural biology efforts have centered on enzymes in the chorismate metabolic pathways involved in amino acid biosynthesis and in structural genomics that involves determining the structures of "hypothetical" proteins to aid in assigning function. In addition to crystallographic studies, structural biology database activities began with the formal establishment of the Biological Macro-molecule Crystallization Database in 1989. Later, in 1997, NIST in partnership with Rutgers and UCSD formed the Research Collaboratory for Structural Bioinformatics that successfully acquired the Protein Data Bank. The NIST efforts in these activities have focused on data uniformity, establishing and maintaining the physical archive, and working with the NMR community.
SUBMITTER: Gilliland GL
PROVIDER: S-EPMC4865297 | biostudies-literature | 2001 Nov-Dec
REPOSITORIES: biostudies-literature
ACCESS DATA