Unknown

Dataset Information

0

Excited-state hydrogen atom abstraction initiates the photochemistry of β-2'-deoxycytidine.


ABSTRACT: Understanding the effects of ultraviolet radiation on nucleotides in solution is an important step towards a comprehensive description of the photochemistry of nucleic acids and their constituents. Apart from having implications for mutagenesis and DNA photoprotection mechanisms, the photochemistry of cytidines is a central element in UV-assisted syntheses of pyrimidine nucleotides under prebiotically plausible conditions. In this contribution, we present UV-irradiation experiments of β-2'-deoxycytidine in aqueous solution involving H-D exchange followed by NMR spectroscopic analysis of the photoproducts. We further elucidate the outcome of these experiments by means of high-level quantum chemical calculations. In particular, we show that prolonged UV-irradiation of cytidine may lead to H-C1' hydrogen atom abstraction by the carbonyl oxygen atom of cytosine. This process may enable photoanomerisation and nucleobase loss, two previously unexplained photoreactions observed in pyrimidine nucleotides.

SUBMITTER: Szabla R 

PROVIDER: S-EPMC4866440 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC8563719 | biostudies-literature
| S-EPMC4313564 | biostudies-literature
| S-EPMC3852885 | biostudies-literature
| S-EPMC7174366 | biostudies-literature
| S-EPMC6036922 | biostudies-literature
| S-EPMC6217389 | biostudies-literature
| S-EPMC6650822 | biostudies-literature
| S-EPMC7197025 | biostudies-literature
| S-EPMC4311965 | biostudies-literature
| S-EPMC9314014 | biostudies-literature