Unknown

Dataset Information

0

Integrative microbial community analysis reveals full-scale enhanced biological phosphorus removal under tropical conditions.


ABSTRACT: Management of phosphorus discharge from human waste is essential for the control of eutrophication in surface waters. Enhanced biological phosphorus removal (EBPR) is a sustainable, efficient way of removing phosphorus from waste water without employing chemical precipitation, but is assumed unachievable in tropical temperatures due to conditions that favour glycogen accumulating organisms (GAOs) over polyphosphate accumulating organisms (PAOs). Here, we show these assumptions are unfounded by studying comparative community dynamics in a full-scale plant following systematic perturbation of operational conditions, which modified community abundance, function and physicochemical state. A statistically significant increase in the relative abundance of the PAO Accumulibacter was associated with improved EBPR activity. GAO relative abundance also increased, challenging the assumption of competition. An Accumulibacter bin-genome was identified from a whole community metagenomic survey, and comparative analysis against extant Accumulibacter genomes suggests a close relationship to Type II. Analysis of the associated metatranscriptome data revealed that genes encoding proteins involved in the tricarboxylic acid cycle and glycolysis pathways were highly expressed, consistent with metabolic modelling results. Our findings show that tropical EBPR is indeed possible, highlight the translational potential of studying competition dynamics in full-scale waste water communities and carry implications for plant design in tropical regions.

SUBMITTER: Law Y 

PROVIDER: S-EPMC4872125 | biostudies-literature | 2016 May

REPOSITORIES: biostudies-literature

altmetric image

Publications

Integrative microbial community analysis reveals full-scale enhanced biological phosphorus removal under tropical conditions.

Law Yingyu Y   Kirkegaard Rasmus Hansen RH   Cokro Angel Anisa AA   Liu Xianghui X   Arumugam Krithika K   Xie Chao C   Stokholm-Bjerregaard Mikkel M   Drautz-Moses Daniela I DI   Nielsen Per Halkjær PH   Wuertz Stefan S   Williams Rohan B H RB  

Scientific reports 20160519


Management of phosphorus discharge from human waste is essential for the control of eutrophication in surface waters. Enhanced biological phosphorus removal (EBPR) is a sustainable, efficient way of removing phosphorus from waste water without employing chemical precipitation, but is assumed unachievable in tropical temperatures due to conditions that favour glycogen accumulating organisms (GAOs) over polyphosphate accumulating organisms (PAOs). Here, we show these assumptions are unfounded by s  ...[more]

Similar Datasets

| S-EPMC3358022 | biostudies-literature
| S-EPMC4520395 | biostudies-literature
| S-EPMC4930944 | biostudies-literature
| S-EPMC1169000 | biostudies-literature
| S-EPMC4502571 | biostudies-literature
| S-EPMC5406452 | biostudies-literature
| S-EPMC2918947 | biostudies-literature
| S-EPMC6776032 | biostudies-literature
| S-EPMC9022429 | biostudies-literature
| S-EPMC126439 | biostudies-literature