Unknown

Dataset Information

0

Structural Insights into Reelin Function: Present and Future.


ABSTRACT: Reelin is a neuronal glycoprotein secreted by the Cajal-Retzius cells in marginal regions of the cerebral cortex and the hippocampus where it plays important roles in the control of neuronal migration and the formation of cellular layers during brain development. This 3461 residue-long protein is composed of a signal peptide, an F-spondin-like domain, eight Reelin repeats (RR1-8), and a positively charged sequence at the C-terminus. Biochemical data indicate that the central region of Reelin binds to the low-density lipoprotein receptors apolipoprotein E receptor 2 (ApoER2) and the very-low-density lipoprotein receptor (VLDLR), leading to the phosphorylation of the intracellular adaptor protein Dab1. After secretion, Reelin is rapidly degraded in three major fragments, but the functional significance of this degradation is poorly understood. Probably due to its large mass and the complexity of its architecture, the high-resolution, three-dimensional structure of Reelin has never been determined. However, the crystal structures of some of the RRs have been solved, providing important insights into their fold and the interaction with the ApoER2 receptor. This review discusses the current findings on the structure of Reelin and its binding to the ApoER2 and VLDLR receptors, and we discuss some areas where proteomics and structural biology can help understanding Reelin function in brain development and human health.

SUBMITTER: Ranaivoson FM 

PROVIDER: S-EPMC4882317 | biostudies-literature | 2016

REPOSITORIES: biostudies-literature

altmetric image

Publications

Structural Insights into Reelin Function: Present and Future.

Ranaivoson Fanomezana M FM   von Daake Sventja S   Comoletti Davide D  

Frontiers in cellular neuroscience 20160527


Reelin is a neuronal glycoprotein secreted by the Cajal-Retzius cells in marginal regions of the cerebral cortex and the hippocampus where it plays important roles in the control of neuronal migration and the formation of cellular layers during brain development. This 3461 residue-long protein is composed of a signal peptide, an F-spondin-like domain, eight Reelin repeats (RR1-8), and a positively charged sequence at the C-terminus. Biochemical data indicate that the central region of Reelin bin  ...[more]

Similar Datasets

| S-EPMC7037811 | biostudies-literature
| S-EPMC6748033 | biostudies-literature
| S-EPMC5696747 | biostudies-literature
| S-EPMC2929629 | biostudies-literature
| S-EPMC7105497 | biostudies-literature
| S-EPMC9274455 | biostudies-literature
| S-EPMC4323881 | biostudies-other
| S-EPMC7120554 | biostudies-literature
| S-EPMC7177664 | biostudies-literature
| S-EPMC3195018 | biostudies-literature