Unknown

Dataset Information

0

Divergence and Conservation of the Major UPR Branch IRE1-bZIP Signaling Pathway across Eukaryotes.


ABSTRACT: The unfolded protein response (UPR) is crucial to life by regulating the cellular response to the stress in the endoplasmic reticulum (ER) imposed by abiotic and biotic cues such as heat shock and viral infection. The inositol requiring enzyme 1 (IRE1) signaling pathway activated by the IRE1-mediated unconventional splicing of HAC1 in yeast, bZIP60 in plants and XBP1 in metazoans, is the most ancient branch of the UPR. In this study, we systematically examined yeast IRE1p-HAC1, plant IRE1A/IRE1B-bZIP60 and human hIRE1-XBP1 pairs. We found that, unlike bZIP60, XBP1 is unable to functionally swap HAC1p in yeast, and that the inter-species heterotypic interactions among HAC1p, bZIP60 and XBP1 are not permitted. These data demonstrate evolutionary divergence of the downstream signaling of IRE1-bZIP. We also discovered that the dual cytosolic domains of plant IRE1s act in vivo in a mechanism consistent with IRE1p and hIRE1, and that plant IRE1B not only interacts with IRE1p but also forms typical IRE1 dynamic foci in yeast. Thus, the upstream components of the IRE1 signaling branch including IRE1 activation and action mechanisms are highly conserved. Taken together these data advance the molecular understanding of evolutionary divergence and conservation of the IRE1 signaling pathway across kingdoms.

SUBMITTER: Zhang L 

PROVIDER: S-EPMC4891664 | biostudies-literature | 2016 Jun

REPOSITORIES: biostudies-literature

altmetric image

Publications

Divergence and Conservation of the Major UPR Branch IRE1-bZIP Signaling Pathway across Eukaryotes.

Zhang Lingrui L   Zhang Changwei C   Wang Aiming A  

Scientific reports 20160603


The unfolded protein response (UPR) is crucial to life by regulating the cellular response to the stress in the endoplasmic reticulum (ER) imposed by abiotic and biotic cues such as heat shock and viral infection. The inositol requiring enzyme 1 (IRE1) signaling pathway activated by the IRE1-mediated unconventional splicing of HAC1 in yeast, bZIP60 in plants and XBP1 in metazoans, is the most ancient branch of the UPR. In this study, we systematically examined yeast IRE1p-HAC1, plant IRE1A/IRE1B  ...[more]

Similar Datasets

| S-EPMC4398384 | biostudies-literature
| S-EPMC8370116 | biostudies-literature
| S-EPMC8372851 | biostudies-literature
2021-06-14 | GSE173852 | GEO
| S-EPMC4502668 | biostudies-literature
| S-EPMC3154848 | biostudies-literature
| S-SCDT-EMBOR-2019-49617V1 | biostudies-other
| S-EPMC7490531 | biostudies-literature
| S-EPMC6858872 | biostudies-literature
| S-EPMC6345973 | biostudies-literature