Project description:DNA Polymerases generate pyrophosphate every time they catalyze a step of DNA elongation. This elongation reaction is generally believed as thermodynamically favoured by the hydrolysis of pyrophosphate, catalyzed by inorganic pyrophosphatases. However, the specific action of inorganic pyrophosphatases coupled to DNA replication in vivo was never demonstrated. Here we show that the Polymerase-Histidinol-Phosphatase (PHP) domain of Escherichia coli DNA Polymerase III α subunit features pyrophosphatase activity. We also show that this activity is inhibited by fluoride, as commonly observed for inorganic pyrophosphatases, and we identified 3 amino acids of the PHP active site. Remarkably, E. coli cells expressing variants of these catalytic residues of α subunit feature aberrant phenotypes, poor viability, and are subject to high mutation frequencies. Our findings indicate that DNA Polymerases can couple DNA elongation and pyrophosphate hydrolysis, providing a mechanism for the control of DNA extension rate, and suggest a promising target for novel antibiotics.
Project description:In Escherichia coli, damage to the chromosomal DNA induces the SOS response, setting in motion a series of different DNA repair and damage tolerance pathways. DNA polymerase IV (pol IV) is one of three specialised DNA polymerases called into action during the SOS response to help cells tolerate certain types of DNA damage. The canonical view in the field is that pol IV primarily acts at replisomes that have stalled on the damaged DNA template. However, the results of several studies indicate that pol IV also acts on other substrates, including single-stranded DNA gaps left behind replisomes that re-initiate replication downstream of a lesion, stalled transcription complexes and recombination intermediates. In this study, we use single-molecule time-lapse microscopy to directly visualize fluorescently labelled pol IV in live cells. We treat cells with the DNA-damaging antibiotic ciprofloxacin, Methylmethane sulfonate (MMS) or ultraviolet light and measure changes in pol IV concentrations and cellular locations through time. We observe that only 5-10% of foci induced by DNA damage form close to replisomes, suggesting that pol IV predominantly carries out non-replisomal functions. The minority of foci that do form close to replisomes exhibit a broad distribution of colocalisation distances, consistent with a significant proportion of pol IV molecules carrying out postreplicative TLS in gaps behind the replisome. Interestingly, the proportion of pol IV foci that form close to replisomes drops dramatically in the period 90-180 min after treatment, despite pol IV concentrations remaining relatively constant. In an SOS-constitutive mutant that expresses high levels of pol IV, few foci are observed in the absence of damage, indicating that within cells access of pol IV to DNA is dependent on the presence of damage, as opposed to concentration-driven competition for binding sites.
Project description:Benzo[a]pyrene, a potent human carcinogen, is metabolized in vivo to a diol epoxide that reacts with the N2-position of guanine to produce N2-BP-dG adducts. These adducts are mutagenic causing G to T transversions. These adducts block replicative polymerases but can be bypassed by the Y-family translesion synthesis polymerases. The mechanisms by which mutagenic bypass occurs is not well-known. We have evaluated base pairing structures using atomic substitution of the dNTP with two stereoisomers, 2'-deoxy-N-[(7R,8S,9R,10S)-7,8,9,10-tetrahydro-7,8,9-trihydroxybenzo[a]pyren-10-yl]guanosine and 2'-deoxy-N-[(7S,8R,9S,10R)-7,8,9,10-tetrahydro-7,8,9-trihydroxybenzo[a]pyren-10-yl]guanosine. We have examined the kinetics of incorporation of 1-deaza-dATP, 7-deaza-dATP, 2'-deoxyinosine triphosphate, and 7-deaza-dGTP, analogues of dATP and dGTP in which single atoms are changed. Changes in rate will occur if that atom provided a critical interaction in the transition state of the reaction. We examined two polymerases, Escherichia coli DNA polymerase I (Kf) and Sulfolobus solfataricus DNA polymerase IV (Dpo4), as models of a high fidelity and TLS polymerase, respectively. We found that with Kf, substitution of the nitrogens on the Watson-Crick face of the dNTPs resulted in decreased rate of reactions. This result is consistent with a Hoogsteen base pair in which the template N2-BP-dG flipped from the anti to syn conformation. With Dpo4, while the substitution did not affect the rate of reaction, the amplitude of the reaction decreased with all substitutions. This result suggests that Dpo4 bypasses N2-BP-dG via Hoogsteen base pairs but that the flipped nucleotide can be either the dNTP or the template.
Project description:The mechanism by which cells recognize and complete replicated regions at their precise doubling point must be remarkably efficient, occurring thousands of times per cell division along the chromosomes of humans. However, this process remains poorly understood. Here we show that, in Escherichia coli, the completion of replication involves an enzymatic system that effectively counts pairs and limits cellular replication to its doubling point by allowing converging replication forks to transiently continue through the doubling point before the excess, over-replicated regions are incised, resected, and joined. Completion requires RecBCD and involves several proteins associated with repairing double-strand breaks including, ExoI, SbcDC, and RecG. However, unlike double-strand break repair, completion occurs independently of homologous recombination and RecA. In some bacterial viruses, the completion mechanism is specifically targeted for inactivation to allow over-replication to occur during lytic replication. The results suggest that a primary cause of genomic instabilities in many double-strand-break-repair mutants arises from an impaired ability to complete replication, independent from DNA damage.
Project description:Replicative DNA polymerases are able to discriminate between very similar substrates with high accuracy. One mechanism by which E. coli DNA polymerase I checks for Watson-Crick geometry is through a hydrogen bonding fork between Arg668 and the incoming dNTP and the minor groove of the primer terminus. The importance of the Arg-fork was examined by disrupting it with either a guanine to 3-deazaguanine substitution at the primer terminus or the use of a carbocyclic deoxyribose analog of dUTP. Using thio-substituted dNTPs and differential quench techniques, we determined that when the Arg-fork was disrupted, the rate-limiting step changed from a conformational change to phosphodiester bond formation. This result indicates that Arg668 is involved in the phosphoryl transfer step. We examined the role of the Arg-fork in the replication of four DNA damaged templates, O6-methylguanine (O6-mG), 8-oxo-7,8-dihydroguanine (oxoG), O2-[4-(3-pyridyl)-4-oxobutyl]thymine (O2-POB-T), and N2-[(7S,8R,9S,10R)-7,8,9,10-tetrahydro-8,9,10-trihydroxybenzo[a]pyren-7-yl]-guanine (N2-BP-G). In general, the guanine to 3-deazaguanine substitution caused a decrease in kpol that was proportional to kpol over five orders of magnitude. The linear relationship indicates that the Arg668-fork helps catalyze phosphoryl transfer by the same mechanism with all the substrates. Exceptions to the linear relationship were the incorporations of dTTP opposite G, oxoG, and O6mG, which showed large decreases in kpol, similar to that exhibited by the Watson-Crick base pairs. It was proposed that the incorporation of dTTP opposite G, oxoG, and O6mG occurred via Watson-Crick-like structures.
Project description:The Escherichia coli dnaE gene encodes the α-catalytic subunit (pol IIIα) of DNA polymerase III, the cell's main replicase. Like all high-fidelity DNA polymerases, pol III possesses stringent base and sugar discrimination. The latter is mediated by a so-called "steric gate" residue in the active site of the polymerase that physically clashes with the 2'-OH of an incoming ribonucleotide. Our structural modeling data suggest that H760 is the steric gate residue in E.coli pol IIIα. To understand how H760 and the adjacent S759 residue help maintain genome stability, we generated DNA fragments in which the codons for H760 or S759 were systematically changed to the other nineteen naturally occurring amino acids and attempted to clone them into a plasmid expressing pol III core (α-θ-ε subunits). Of the possible 38 mutants, only nine were successfully sub-cloned: three with substitutions at H760 and 6 with substitutions at S759. Three of the plasmid-encoded alleles, S759C, S759N, and S759T, exhibited mild to moderate mutator activity and were moved onto the chromosome for further characterization. These studies revealed altered phenotypes regarding deoxyribonucleotide base selectivity and ribonucleotide discrimination. We believe that these are the first dnaE mutants with such phenotypes to be reported in the literature.
Project description:The SOS response is a DNA damage response pathway that serves as a general safeguard of genome integrity in bacteria. Extensive studies of the SOS response in Escherichia coli have contributed to establishing the key concepts of cellular responses to DNA damage. However, how the SOS response impacts on the dynamics of DNA replication fork movement remains unknown. We found that inducing the SOS response decreases the mean speed of individual replication forks by 30-50% in E. coli cells, leading to a 20-30% reduction in overall DNA synthesis. dinB and recA belong to a group of genes that are upregulated during the SOS response, and encode the highly conserved proteins DinB (also known as DNA polymerase IV) and RecA, which, respectively, specializes in translesion DNA synthesis and functions as the central recombination protein. Both genes were independently responsible for the SOS-dependent slowdown of replication fork progression. Furthermore, fork speed was reduced when each gene was ectopically expressed in SOS-uninduced cells to the levels at which they are expressed in SOS-induced cells. These results clearly indicate that the increased expression of dinB and recA performs a novel role in restraining the progression of an unperturbed replication fork during the SOS response.
Project description:Host functions required for replication of microvirid phage G13 DNA were investigated in vivo, using thermosensitive dna mutants of Escherichia coli. In dna+ bacteria, conversion of viral single-stranded DNA into double-stranded replicative form (stage I synthesis) was resistant to 150 microgram/ml of chloramphenicol or 200 microgram/ml of rifampicin. Although multiplication of G13 phage was severely inhibited at 42--43 degrees C even in dna+ host, considerable amount of parental replicative form was synthesized at 43 degrees C in dna+, dnaA or dnaE bacteria. In dnaB and dnaG mutants, however, synthesis of parental replicative form was severely inhibited at the restrictive temperature. Interestingly enough, stage I replication of G13 DNA was, unlike that of phiX174, dependent on host dnaC(D) function. Moreover, the stage I synthesis of G13 DNA in dnaZ was thermosensitive in nutrient broth but not in Tris/casamino acids/glucose medium. In contrast with the stage I replication, synthesis of G13 progeny replicative form was remarkably thermosensitive even in dna+ or dnA cells.
Project description:Escherichia coli possesses five known DNA polymerases (pols). Pol III holoenzyme is the cell's main replicase, while pol I is responsible for the maturation of Okazaki fragments and filling gaps generated during nucleotide excision repair. Pols II, IV and V are significantly upregulated as part of the cell's global SOS response to DNA damage and under these conditions, may alter the fidelity of DNA replication by potentially interfering with the ability of pols I and III to complete their cellular functions. To test this hypothesis, we determined the spectrum of rpoB mutations arising in an isogenic set of mutL strains differentially expressing the chromosomally encoded pols. Interestingly, mutagenic hot spots in rpoB were identified that are susceptible to the actions of pols I-V. For example, in a recA730 lexA(Def) mutL background most transversions were dependent upon pols IV and V. In contrast, transitions were largely dependent upon pol I and to a lesser extent, pol III. Furthermore, the extent of pol I-dependent mutagenesis at one particular site was modulated by pols II and IV. Our observations suggest that there is considerable interplay among all five E. coli polymerases that either reduces or enhances the mutagenic load on the E. coli chromosome.
Project description:The epsilon-subunit contains the catalytic site for the 3'-->5' proofreading exonuclease that functions in the DNA pol III (DNA polymerase III) core to edit nucleotides misinserted by the alpha-subunit DNA pol. A novel mutagenesis strategy was used to identify 23 dnaQ alleles that exhibit a mutator phenotype in vivo. Fourteen of the epsilon mutants were purified, and these proteins exhibited 3'-->5' exonuclease activities that ranged from 32% to 155% of the activity exhibited by the wild-type epsilon protein, in contrast with the 2% activity exhibited by purified MutD5 protein. DNA pol III core enzymes constituted with 11 of the 14 epsilon mutants exhibited an increased error rate during in vitro DNA synthesis using a forward mutation assay. Interactions of the purified epsilon mutants with the alpha- and theta;-subunits were examined by gel filtration chromatography and exonuclease stimulation assays, and by measuring polymerase/exonuclease ratios to identify the catalytically active epsilon511 (I170T/V215A) mutant with dysfunctional proofreading in the DNA pol III core. The epsilon511 mutant associated tightly with the alpha-subunit, but the exonuclease activity of epsilon511 was not stimulated in the alpha-epsilon511 complex. Addition of the theta;-subunit to generate the alpha-epsilon511-theta; DNA pol III core partially restored stimulation of the epsilon511 exonuclease, indicating a role for the theta;-subunit in co-ordinating the alpha-epsilon polymerase-exonuclease interaction. The alpha-epsilon511-theta; DNA pol III core exhibited a 3.5-fold higher polymerase/exonuclease ratio relative to the wild-type DNA pol III core, further indicating dysfunctional proofreading in the alpha-epsilon511-theta; complex. Thus the epsilon511 mutant has wild-type 3'-->5' exonuclease activity and associates physically with the alpha- and theta;-subunits to generate a proofreading-defective DNA pol III enzyme.