Unknown

Dataset Information

0

Drug repositioning for non-small cell lung cancer by using machine learning algorithms and topological graph theory.


ABSTRACT: BACKGROUND:Non-small cell lung cancer (NSCLC) is one of the leading causes of death globally, and research into NSCLC has been accumulating steadily over several years. Drug repositioning is the current trend in the pharmaceutical industry for identifying potential new uses for existing drugs and accelerating the development process of drugs, as well as reducing side effects. RESULTS:This work integrates two approaches--machine learning algorithms and topological parameter-based classification--to develop a novel pipeline of drug repositioning to analyze four lung cancer microarray datasets, enriched biological processes, potential therapeutic drugs and targeted genes for NSCLC treatments. A total of 7 (8) and 11 (12) promising drugs (targeted genes) were discovered for treating early- and late-stage NSCLC, respectively. The effectiveness of these drugs is supported by the literature, experimentally determined in-vitro IC50 and clinical trials. This work provides better drug prediction accuracy than competitive research according to IC50 measurements. CONCLUSIONS:With the novel pipeline of drug repositioning, the discovery of enriched pathways and potential drugs related to NSCLC can provide insight into the key regulators of tumorigenesis and the treatment of NSCLC. Based on the verified effectiveness of the targeted drugs predicted by this pipeline, we suggest that our drug-finding pipeline is effective for repositioning drugs.

SUBMITTER: Huang CH 

PROVIDER: S-EPMC4895785 | biostudies-literature | 2016 Jan

REPOSITORIES: biostudies-literature

altmetric image

Publications

Drug repositioning for non-small cell lung cancer by using machine learning algorithms and topological graph theory.

Huang Chien-Hung CH   Chang Peter Mu-Hsin PM   Hsu Chia-Wei CW   Huang Chi-Ying F CY   Ng Ka-Lok KL  

BMC bioinformatics 20160111


<h4>Background</h4>Non-small cell lung cancer (NSCLC) is one of the leading causes of death globally, and research into NSCLC has been accumulating steadily over several years. Drug repositioning is the current trend in the pharmaceutical industry for identifying potential new uses for existing drugs and accelerating the development process of drugs, as well as reducing side effects.<h4>Results</h4>This work integrates two approaches--machine learning algorithms and topological parameter-based c  ...[more]

Shared Molecules

Only show the datasets with similarity scores above: 0.5
     

Similar Datasets

| S-EPMC5871915 | biostudies-literature
| S-EPMC11342530 | biostudies-literature
| S-EPMC3704944 | biostudies-literature
| S-EPMC6538545 | biostudies-literature
| S-EPMC8574649 | biostudies-literature
| S-EPMC10761094 | biostudies-literature
| S-EPMC8576113 | biostudies-literature
| S-EPMC10481305 | biostudies-literature
| S-EPMC8579680 | biostudies-literature
| S-EPMC7702310 | biostudies-literature