Unknown

Dataset Information

0

Insulin-Like Growth Factor-1 Receptor Deficiency in Macrophages Accelerates Atherosclerosis and Induces an Unstable Plaque Phenotype in Apolipoprotein E-Deficient Mice.


ABSTRACT: We have previously shown that systemic infusion of insulin-like growth factor-1 (IGF-1) exerts anti-inflammatory and antioxidant effects and reduces atherosclerotic burden in apolipoprotein E (Apoe)-deficient mice. Monocytes/macrophages express high levels of IGF-1 receptor (IGF1R) and play a pivotal role in atherogenesis, but the potential effects of IGF-1 on their function are unknown.To determine mechanisms whereby IGF-1 reduces atherosclerosis and to explore the potential involvement of monocytes/macrophages, we created monocyte/macrophage-specific IGF1R knockout (M?-IGF1R-KO) mice on an Apoe(-/-) background. We assessed atherosclerotic burden, plaque features of stability, and monocyte recruitment to atherosclerotic lesions. Phenotypic changes of IGF1R-deficient macrophages were investigated in culture. M?-IGF1R-KO significantly increased atherosclerotic lesion formation, as assessed by Oil Red O staining of en face aortas and aortic root cross-sections, and changed plaque composition to a less stable phenotype, characterized by increased macrophage and decreased ?-smooth muscle actin-positive cell population, fibrous cap thinning, and decreased collagen content. Brachiocephalic artery lesions of M?-IGF1R-KO mice had histological features implying plaque vulnerability. Macrophages isolated from M?-IGF1R-KO mice showed enhanced proinflammatory responses on stimulation by interferon-? and oxidized low-density lipoprotein and elevated antioxidant gene expression levels. Moreover, IGF1R-deficient macrophages had decreased expression of ABCA1 and ABCG1 and reduced lipid efflux.Our data indicate that macrophage IGF1R signaling suppresses macrophage and foam cell accumulation in lesions and reduces plaque vulnerability, providing a novel mechanism whereby IGF-1 exerts antiatherogenic effects.

SUBMITTER: Higashi Y 

PROVIDER: S-EPMC4899151 | biostudies-literature | 2016 Jun

REPOSITORIES: biostudies-literature

altmetric image

Publications

Insulin-Like Growth Factor-1 Receptor Deficiency in Macrophages Accelerates Atherosclerosis and Induces an Unstable Plaque Phenotype in Apolipoprotein E-Deficient Mice.

Higashi Yusuke Y   Sukhanov Sergiy S   Shai Shaw-Yung SY   Danchuk Svitlana S   Tang Richard R   Snarski Patricia P   Li Zhaohui Z   Lobelle-Rich Patricia P   Wang Meifang M   Wang Derek D   Yu Hong H   Korthuis Ronald R   Delafontaine Patrice P  

Circulation 20160506 23


<h4>Background</h4>We have previously shown that systemic infusion of insulin-like growth factor-1 (IGF-1) exerts anti-inflammatory and antioxidant effects and reduces atherosclerotic burden in apolipoprotein E (Apoe)-deficient mice. Monocytes/macrophages express high levels of IGF-1 receptor (IGF1R) and play a pivotal role in atherogenesis, but the potential effects of IGF-1 on their function are unknown.<h4>Methods and results</h4>To determine mechanisms whereby IGF-1 reduces atherosclerosis a  ...[more]

Similar Datasets

| S-EPMC6215431 | biostudies-literature
| S-EPMC4007137 | biostudies-literature
| S-EPMC5474748 | biostudies-literature
| S-EPMC8702732 | biostudies-literature
| S-EPMC489994 | biostudies-literature
| S-EPMC3020149 | biostudies-literature
| S-EPMC2874840 | biostudies-literature
| S-EPMC6370858 | biostudies-literature
| S-EPMC6058916 | biostudies-literature
| S-EPMC4831306 | biostudies-literature