Unknown

Dataset Information

0

Membrane Interactions, Ligand-Dependent Dynamics, and Stability of Cytochrome P4503A4 in Lipid Nanodiscs.


ABSTRACT: Membrane-bound cytochrome P4503A4 (CYP3A4) is the major source of enzymatic drug metabolism. Although several structural models of CYP3A4 in various ligand complexes are available, none includes a lipid bilayer. Details of the effects of the membrane on protein dynamics and solvation, and access channels for ligands, remain uncertain. H/D exchange mass spectrometry (H/DXMS) with ligand free CYP3A4 containing a deletion of residues 3-12, compared to that of the full length wild type, in lipid nanodiscs afforded 91% sequence coverage. Deuterium exchange was fast in the F- and G-helices, HI loop, and C-terminal loop. In contrast, there is very low exchange in the F'- and G'-helices. The results are consistent with the overall membrane orientation of CYP3A4 suggested by published MD simulations and spectroscopic results, and the solvent accessibility of the F/G loop suggests that it is not deeply membrane-embedded. Addition of ketoconazole results in only modest, but global, changes in solvent accessibility. Interestingly, with ketoconazole bound some peptides become less solvent accessible or dynamic, including the F- and G-helices, but several peptides demonstrate modestly increased accessibility. Differential scanning calorimetry (DSC) of CYP3A4-nanodiscs suggests membrane-induced stabilization compared to that of aggregated CYP3A4 in buffer, and this stabilization is enhanced upon addition of the ligand ketoconazole. This ligand-induced stabilization is accompanied by a very large increase in ?H for CYP3A4 denaturation in nanodiscs, possibly due to increased CYP3A4-membrane interactions. Together, the results suggest a distinct orientation of CYP3A4 on the lipid membrane, and they highlight likely solvent access channels, which are consistent with several MD simulations.

SUBMITTER: Treuheit NA 

PROVIDER: S-EPMC4936277 | biostudies-literature | 2016 Feb

REPOSITORIES: biostudies-literature

altmetric image

Publications

Membrane Interactions, Ligand-Dependent Dynamics, and Stability of Cytochrome P4503A4 in Lipid Nanodiscs.

Treuheit Nicholas A NA   Redhair Michelle M   Kwon Hyewon H   McClary Wynton D WD   Guttman Miklos M   Sumida John P JP   Atkins William M WM  

Biochemistry 20160208 7


Membrane-bound cytochrome P4503A4 (CYP3A4) is the major source of enzymatic drug metabolism. Although several structural models of CYP3A4 in various ligand complexes are available, none includes a lipid bilayer. Details of the effects of the membrane on protein dynamics and solvation, and access channels for ligands, remain uncertain. H/D exchange mass spectrometry (H/DXMS) with ligand free CYP3A4 containing a deletion of residues 3-12, compared to that of the full length wild type, in lipid nan  ...[more]

Similar Datasets

| S-EPMC5275761 | biostudies-literature
| S-EPMC7245426 | biostudies-literature
| S-EPMC6022741 | biostudies-literature
| S-EPMC5697661 | biostudies-literature
| EMPIAR-11628 | biostudies-other
| S-EPMC4939474 | biostudies-literature
| S-EPMC7904231 | biostudies-literature
| S-EPMC9135701 | biostudies-literature
| S-EPMC3271004 | biostudies-literature
| S-EPMC3606017 | biostudies-literature