Network Analysis and Visualization of Mouse Retina Connectivity Data.
Ontology highlight
ABSTRACT: The largest available cellular level connectivity map, of a 0.1 mm sample of the mouse retina Inner Plexiform Layer, was analysed using network models and visualized using spectral graph layouts and observed cell coordinates. This allows key nodes in the network to be identified with retinal neurons. Their strongest synaptic links can trace pathways in the network, elucidating possible circuits. Modular decomposition of the network, by sampling signal flows over nodes and links using the InfoMap method, shows discrete modules of cone bipolar cells that form a tiled mosaic in the retinal plane. The highest flow nodes, calculated by InfoMap, proved to be the most useful landmarks for elucidating possible circuits. Their dominant links to high flow amacrine cells reveal possible circuits linking bipolar through to ganglion cells and show an Off-On discrimination between the Left-Right sections of the sample. Circuits suggested by this analysis confirm known roles for some cells and point to roles for others.
SUBMITTER: Pailthorpe BA
PROVIDER: S-EPMC4944929 | biostudies-literature |
REPOSITORIES: biostudies-literature
ACCESS DATA