Unknown

Dataset Information

0

Using the weighted area under the net benefit curve for decision curve analysis.


ABSTRACT:

Background

Risk prediction models have been proposed for various diseases and are being improved as new predictors are identified. A major challenge is to determine whether the newly discovered predictors improve risk prediction. Decision curve analysis has been proposed as an alternative to the area under the curve and net reclassification index to evaluate the performance of prediction models in clinical scenarios. The decision curve computed using the net benefit can evaluate the predictive performance of risk models at a given or range of threshold probabilities. However, when the decision curves for 2 competing models cross in the range of interest, it is difficult to identify the best model as there is no readily available summary measure for evaluating the predictive performance. The key deterrent for using simple measures such as the area under the net benefit curve is the assumption that the threshold probabilities are uniformly distributed among patients.

Methods

We propose a novel measure for performing decision curve analysis. The approach estimates the distribution of threshold probabilities without the need of additional data. Using the estimated distribution of threshold probabilities, the weighted area under the net benefit curve serves as the summary measure to compare risk prediction models in a range of interest.

Results

We compared 3 different approaches, the standard method, the area under the net benefit curve, and the weighted area under the net benefit curve. Type 1 error and power comparisons demonstrate that the weighted area under the net benefit curve has higher power compared to the other methods. Several simulation studies are presented to demonstrate the improvement in model comparison using the weighted area under the net benefit curve compared to the standard method.

Conclusions

The proposed measure improves decision curve analysis by using the weighted area under the curve and thereby improves the power of the decision curve analysis to compare risk prediction models in a clinical scenario.

SUBMITTER: Talluri R 

PROVIDER: S-EPMC4949771 | biostudies-literature | 2016 Jul

REPOSITORIES: biostudies-literature

altmetric image

Publications

Using the weighted area under the net benefit curve for decision curve analysis.

Talluri Rajesh R   Shete Sanjay S  

BMC medical informatics and decision making 20160718


<h4>Background</h4>Risk prediction models have been proposed for various diseases and are being improved as new predictors are identified. A major challenge is to determine whether the newly discovered predictors improve risk prediction. Decision curve analysis has been proposed as an alternative to the area under the curve and net reclassification index to evaluate the performance of prediction models in clinical scenarios. The decision curve computed using the net benefit can evaluate the pred  ...[more]

Similar Datasets

| S-EPMC7290540 | biostudies-literature
| S-EPMC8278775 | biostudies-literature
| S-EPMC3923449 | biostudies-literature
| S-EPMC6853683 | biostudies-literature
| S-EPMC6668995 | biostudies-literature
| S-EPMC8211369 | biostudies-literature
| S-EPMC4965290 | biostudies-literature
| S-EPMC5554116 | biostudies-other
| S-EPMC7193817 | biostudies-literature
| S-EPMC3152796 | biostudies-literature