MicroRNA-mediated target mRNA cleavage and 3'-uridylation in human cells.
Ontology highlight
ABSTRACT: MicroRNAs (miRNAs) play an important role in targeted gene silencing by facilitating posttranscriptional and translational repression. However, the precise mechanism of mammalian miRNA-mediated gene silencing remains to be elucidated. Here, we used a stem-loop array reverse-transcription polymerase chain reaction assay to analyse miRNA-induced mRNA recognition, cleavage, posttranscriptional modification, and degradation. We detected endogenous let-7 miRNA-induced and Argonaute-catalysed endonucleolytic cleavage on target mRNAs at various sites within partially paired miRNA:mRNA sequences. Most of the cleaved mRNA 5'-fragments were 3'-oligouridylated by activities of terminal uridylyl transferases (TUTases) in miRNA-induced silencing complexes and temporarily accumulated in the cytosol for 5'-3' degradation or other molecular fates. Some 3'-5' decayed mRNA fragments could also be captured by the miRNA-induced silencing complex stationed at the specific miRNA:mRNA target site and oligouridylated by other TUTases at its proximity without involving Argonaute-mediated RNA cleavage. Our findings provide new insights into the molecular mechanics of mammalian miRNA-mediated gene silencing by coordinated target mRNA recognition, cleavage, uridylation and degradation.
SUBMITTER: Xu K
PROVIDER: S-EPMC4954961 | biostudies-literature | 2016 Jul
REPOSITORIES: biostudies-literature
ACCESS DATA