Unknown

Dataset Information

0

Quantitative Comparison of Photothermal Heat Generation between Gold Nanospheres and Nanorods.


ABSTRACT: Gold nanoparticles (GNPs) are widely used for biomedical applications due to unique optical properties, established synthesis methods, and biological compatibility. Despite important applications of plasmonic heating in thermal therapy, imaging, and diagnostics, the lack of quantification in heat generation leads to difficulties in comparing the heating capability for new plasmonic nanostructures and predicting the therapeutic and diagnostic outcome. This study quantifies GNP heat generation by experimental measurements and theoretical predictions for gold nanospheres (GNS) and nanorods (GNR). Interestingly, the results show a GNP-type dependent agreement between experiment and theory. The measured heat generation of GNS matches well with theory, while the measured heat generation of GNR is only 30% of that predicted theoretically at peak absorption. This then leads to a surprising finding that the polydispersity, the deviation of nanoparticle size and shape from nominal value, significantly influences GNR heat generation (>70% reduction), while having a limited effect for GNS (<10% change). This work demonstrates that polydispersity is an important metric in quantitatively predicting plasmonic heat generation and provides a validated framework to quantitatively compare the heating capabilities between gold and other plasmonic nanostructures.

SUBMITTER: Qin Z 

PROVIDER: S-EPMC4956767 | biostudies-literature | 2016 Jul

REPOSITORIES: biostudies-literature

altmetric image

Publications

Quantitative Comparison of Photothermal Heat Generation between Gold Nanospheres and Nanorods.

Qin Zhenpeng Z   Wang Yiru Y   Randrianalisoa Jaona J   Raeesi Vahid V   Chan Warren C W WC   Lipiński Wojciech W   Bischof John C JC  

Scientific reports 20160721


Gold nanoparticles (GNPs) are widely used for biomedical applications due to unique optical properties, established synthesis methods, and biological compatibility. Despite important applications of plasmonic heating in thermal therapy, imaging, and diagnostics, the lack of quantification in heat generation leads to difficulties in comparing the heating capability for new plasmonic nanostructures and predicting the therapeutic and diagnostic outcome. This study quantifies GNP heat generation by  ...[more]

Similar Datasets

| S-EPMC3609935 | biostudies-literature
| S-EPMC5995181 | biostudies-literature
| S-EPMC9737450 | biostudies-literature
| S-EPMC3582999 | biostudies-literature
| S-EPMC7806971 | biostudies-literature
| S-EPMC6135770 | biostudies-literature
| S-EPMC8630206 | biostudies-literature
| S-EPMC9163824 | biostudies-literature
| S-EPMC8465109 | biostudies-literature
| S-EPMC4493038 | biostudies-literature