Unknown

Dataset Information

0

Interaction between Endothelial Protein C Receptor and Intercellular Adhesion Molecule 1 to Mediate Binding of Plasmodium falciparum-Infected Erythrocytes to Endothelial Cells.


ABSTRACT:

Unlabelled

Intercellular adhesion molecule 1 (ICAM-1) and the endothelial protein C receptor (EPCR) are candidate receptors for the deadly complication cerebral malaria. However, it remains unclear if Plasmodium falciparum parasites with dual binding specificity are involved in cytoadhesion or different parasite subpopulations bind in brain microvessels. Here, we investigated this issue by studying different subtypes of ICAM-1-binding parasite lines. We show that two parasite lines expressing domain cassette 13 (DC13) of the P. falciparum erythrocyte membrane protein 1 (PfEMP1) family have dual binding specificity for EPCR and ICAM-1 and further mapped ICAM-1 binding to the first DBL? domain following the PfEMP1 head structure in both proteins. As PfEMP1 head structures have diverged between group A (EPCR binders) and groups B and C (CD36 binders), we also investigated how ICAM-1-binding parasites with different coreceptor binding traits influence P. falciparum-infected erythrocyte binding to endothelial cells. Whereas levels of binding to tumor necrosis factor alpha (TNF-?)-stimulated endothelial cells from the lung and brain by all ICAM-1-binding parasite lines increased, group A (EPCR and ICAM-1) was less dependent than group B (CD36 and ICAM-1) on ICAM-1 upregulation. Furthermore, both group A DC13 parasite lines had higher binding levels to brain endothelial cells (a microvascular niche with limited CD36 expression). This study shows that ICAM-1 is a coreceptor for a subset of EPCR-binding parasites and provides the first evidence of how EPCR and ICAM-1 interact to mediate parasite binding to both resting and TNF-?-activated primary brain and lung endothelial cells.

Importance

Cerebral malaria is a severe neurological complication of P. falciparum infection associated with infected erythrocyte (IE) binding in cerebral vessels. Yet little is known about the mechanisms by which parasites adhere in the brain or other microvascular sites. Here, we studied parasite lines expressing group A DC13-containing PfEMP1 variants, a subset that has previously been shown to have high brain cell- and other endothelial cell-binding activities. We show that DC13-containing PfEMP1 variants have dual EPCR- and ICAM-1-binding activities and that both receptors are involved in parasite adherence to lung and brain endothelial cells. As both EPCR and ICAM-1 are implicated in cerebral malaria, these findings suggest the possibility that parasites with dual binding activities are involved in parasite sequestration to microvascular beds with low CD36 expression, such as the brain, and we urge more research into the multiadhesive properties of PfEMP1 variants.

SUBMITTER: Avril M 

PROVIDER: S-EPMC4958245 | biostudies-literature | 2016 Jul

REPOSITORIES: biostudies-literature

altmetric image

Publications

Interaction between Endothelial Protein C Receptor and Intercellular Adhesion Molecule 1 to Mediate Binding of Plasmodium falciparum-Infected Erythrocytes to Endothelial Cells.

Avril Marion M   Bernabeu Maria M   Benjamin Maxwell M   Brazier Andrew Jay AJ   Smith Joseph D JD  

mBio 20160712 4


<h4>Unlabelled</h4>Intercellular adhesion molecule 1 (ICAM-1) and the endothelial protein C receptor (EPCR) are candidate receptors for the deadly complication cerebral malaria. However, it remains unclear if Plasmodium falciparum parasites with dual binding specificity are involved in cytoadhesion or different parasite subpopulations bind in brain microvessels. Here, we investigated this issue by studying different subtypes of ICAM-1-binding parasite lines. We show that two parasite lines expre  ...[more]

Similar Datasets

| S-EPMC4114535 | biostudies-literature
| S-EPMC1564255 | biostudies-literature
| S-EPMC8198633 | biostudies-literature
| S-EPMC8221791 | biostudies-literature
| S-EPMC26510 | biostudies-literature
| S-EPMC21841 | biostudies-literature
| S-EPMC2329659 | biostudies-literature
2009-11-10 | GSE9861 | GEO
| S-EPMC3621960 | biostudies-literature
| S-EPMC7449074 | biostudies-literature