Unknown

Dataset Information

0

Fast, Continuous, and High-Throughput (Bio)Chemical Activity Assay for N-Acyl-l-Homoserine Lactone Quorum-Quenching Enzymes.


ABSTRACT: Quorum sensing, the bacterial cell-cell communication by small molecules, controls important processes such as infection and biofilm formation. Therefore, it is a promising target with several therapeutic and technical applications besides its significant ecological relevance. Enzymes inactivating N-acyl-l-homoserine lactones, the most common class of communication molecules among Gram-negative proteobacteria, mainly belong to the groups of quorum-quenching lactonases or quorum-quenching acylases. However, identification, characterization, and optimization of these valuable biocatalysts are based on a very limited number of fundamentally different methods with their respective strengths and weaknesses. Here, a (bio)chemical activity assay is described, which perfectly complements the other methods in this field. It enables continuous and high-throughput activity measurements of purified and unpurified quorum-quenching enzymes within several minutes. For this, the reaction products released by quorum-quenching lactonases and quorum-quenching acylases are converted either by a secondary enzyme or by autohydrolysis to l-homoserine. In turn, l-homoserine is detected by the previously described calcein assay, which is sensitive to ?-amino acids with free N and C termini. Besides its establishment, the method was applied to the characterization of three previously undescribed quorum-quenching lactonases and variants thereof and to the identification of quorum-quenching acylase-expressing Escherichia coli clones in an artificial library. Furthermore, this study indicates that porcine aminoacylase 1 is not active toward N-acyl-l-homoserine lactones as published previously but instead converts the autohydrolysis product N-acyl-l-homoserine.In this study, a novel method is presented for the identification, characterization, and optimization of quorum-quenching enzymes that are active toward N-acyl-l-homoserine lactones. These are the most common communication molecules among Gram-negative proteobacteria. The activity assay is a highly valuable complement to the available analytical tools in this field. It will facilitate studies on the environmental impact of quorum-quenching enzymes and contribute to the development of therapeutic and technical applications of this promising enzyme class.

SUBMITTER: Last D 

PROVIDER: S-EPMC4959188 | biostudies-literature | 2016 Jul

REPOSITORIES: biostudies-literature

altmetric image

Publications

Fast, Continuous, and High-Throughput (Bio)Chemical Activity Assay for N-Acyl-l-Homoserine Lactone Quorum-Quenching Enzymes.

Last Daniel D   Krüger Georg H E GH   Dörr Mark M   Bornscheuer Uwe T UT  

Applied and environmental microbiology 20160630 14


<h4>Unlabelled</h4>Quorum sensing, the bacterial cell-cell communication by small molecules, controls important processes such as infection and biofilm formation. Therefore, it is a promising target with several therapeutic and technical applications besides its significant ecological relevance. Enzymes inactivating N-acyl-l-homoserine lactones, the most common class of communication molecules among Gram-negative proteobacteria, mainly belong to the groups of quorum-quenching lactonases or quoru  ...[more]

Similar Datasets

| S-EPMC3106361 | biostudies-literature
| S-EPMC1418629 | biostudies-literature
| S-EPMC1187999 | biostudies-literature
| S-EPMC1295591 | biostudies-literature
| S-EPMC3752275 | biostudies-literature
| S-EPMC6479171 | biostudies-literature
| S-EPMC3379639 | biostudies-literature
| S-EPMC7489903 | biostudies-literature
| S-EPMC3907830 | biostudies-other
| S-EPMC6426785 | biostudies-literature