MAL Daylight Photodynamic Therapy for Actinic Keratosis: Clinical and Imaging Evaluation by 3D Camera.
Ontology highlight
ABSTRACT: Non-melanoma skin cancer is the most common skin cancer with an incidence that varies widely worldwide. Among them, actinic keratosis (AK), considered by some authors as in situ squamous cell carcinoma (SCC), are the most common and reflect an abnormal multistep skin cell development due to the chronic ultraviolet (UV) light exposure. No ideal treatment exists, but the potential risk of their development in a more invasive form requires prompt treatment. As patients usually present with multiple AK on fields of actinic damage, there is a need for effective, safe, simple and short treatments which allow the treatment of large areas. To achieve this, daylight photodynamic therapy (DL-PDT) is an innovative treatment for multiple mild actinic keratosis, well tolerated by patients. Patients allocated to the PDT unit, affected by multiple mild-moderate and severe actinic keratosis on sun-exposed areas treated with DL-PDT, were clinically evaluated at baseline and every three months with an Antera 3D, Miravex(©) camera. Clinical and 3D images were performed at each clinical check almost every three months. In this retrospective study, 331 patients (56.7% male, 43.3% female) were treated with DL-PDT. We observed a full clearance in more than two-thirds of patients with one or two treatments. Different responses depend on the number of lesions and on their severity; for patients with 1-3 lesions and with grade I or II AK, a full clearance was reached in 85% of cases with a maximum of two treatments. DL-PDT in general improved skin tone and erased sun damage. Evaluating each Antera 3D images, hemoglobin concentration and pigmentation, a skin color and tone improvement in 310 patients was observed. DL-PDT appears as a promising, effective, simple, tolerable and practical treatment for actinic damage associated with AK, and even treatment of large areas can be with little or no pain. The 3D imaging allowed for quantifying in real time the aesthetic benefits of DL-PDT's increasing compliance.
SUBMITTER: Cantisani C
PROVIDER: S-EPMC4964483 | biostudies-literature | 2016 Jul
REPOSITORIES: biostudies-literature
ACCESS DATA